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Abstract

Field sequential (FS) imaging comprises image acquisition systems that capture image channels

in temporal sequence in order to provide the final image. A classical application is multispectral

imaging. In case of dynamic scenes, the sequential nature of the acquisition imposes motion

artifacts, i.e., spatially misaligned images channels. Compensating motion artifacts for this kind of

imagery is non-trivial, as common methods for motion estimation rely on the intensity consistency

constraint that is violated in FS imaging.

This paper surveys approaches to motion compensation in the context of FS imaging. We

focus on accuracy in handling intensity inconsistent data and, secondarily, speed, as FS imaging is

commonly done in real-time. We introduce a conceptual classification for algorithmic approaches

for motion estimation for FS imagery and discuss known and modified approaches to tackle the

intensity inconsistencies between adjacent image channels using image transformation and inten-

sity correction methods. As result, we get a set of 379 variants of motion estimation methods

applicable to FS data streams. We evaluate these methods using our benchmark database, which

comprises data sets from the Middlebury and the MPI Sintel databases, modified to emulate FS

imagery, as well as additionally captured multispectral short wave infrared (SWIR) and sRGB

image sequences, as well as simulated Time-of-Flight (ToF) image sequences that consist of four

channels (called phase images). In order to quantify the motion estimation techniques, we use a

ranking scheme similar to Middlebury and combine it with a run-time evaluation.

Keywords: Field sequential imaging, motion estimation, optical flow

1. Introduction

Field sequential (FS)1 imaging systems acquire several channel images sequentially at full

spatial resolution of the final image. These kind of image acquisition systems mainly appear in
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1derived from Field Sequential Color Capturing for color imaging (Daly and Feng, 2004)
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multispectral imaging, but also in range imaging, e.g. in Time-of-Flight (ToF) range imaging. In

the case of multispectral imaging, the final image is composed of this set of spectral channels,5

while in ToF range imaging, the final depth image is computed from the channels (called phase

images in the ToF context).

Multispectral FS imaging system are capable of capturing high-density spectral information of

object surfaces and thus offer several advantages over grayscale or RGB cameras in applications

such as remote sensing, astronomy, agriculture, medicine or food quality control (Gowen et al.,10

2007), as well as high quality color image reproduction and conservation of art (Brauers et al.,

2009). While simultaneous multispectral image acquisition use, e.g., static filters such as the Bayer

pattern or beam splitters, multispectral FS imaging systems are realized using, e.g., broad band

imagers combined with interchangeable band pass filters mounted on a filter wheel (Helling et al.,

2004; Brauers et al., 2009; Bourlai et al., 2012), electronically tunable filters (Gat, 2000), or active15

(narrow band) illumination setups (Steiner et al., 2016). The multispectral FS imaging approaches

are more flexible in selecting the spectral bands and allow for the acquisition of a much larger

number of spectral channels than simultaneous approaches.

ToF cameras calculate the camera-object distance by estimating the time delay that actively

emitted light takes to travel from the light source to the object surface and back to the sensor’s20

pixel. Therefore, the amplitude of the emitted light signal is modulated and the backscattered

light signal is correlated at pixel-level in the sensor. It takes at least three different phase images

(channels in our notation) in order to reconstruct a distance image (Lange and Seitz, 2001; Kolb

et al., 2010; Lambers et al., 2015).

Combined
(Uncompensated)

Channel 0
(t=0)

Channel 1
(t=1)

Channel 2
(t=2)

Figure 1: A waving hand recorded using field-sequential color capturing, with channels captured at subsequent

times t. When the channels are combined in a multispectral image, the color breakup effect occurs.

In case of dynamic scenes, all FS image capturing systems suffer from motion artifacts, as25

moving objects will not match between the different channels; see Fig. 1. Depending on the

amount of motion and the application requirements, raw FS imagery cannot be used without

compensating the motion artifacts. Although motion estimation has a long and successful history
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in computer vision, existing motion estimation techniques cannot handle FS imagery properly, as

it strongly violates the intensity consistency assumption between adjacent channels, which most30

state of the art motion estimation techniques rely upon (Baker et al., 2011).

In this paper we describe simple and generic approaches in order to apply existing motion

estimation approaches to FS imagery that, in most cases, incorporate up to three components:

Motion Estimation Scheme: There are various basic concepts on how to estimate motion

within an FS image stream (see Sec. 3). Corresponding channel matching (CCM) meth-35

ods estimate motion fields between corresponding channels of adjacent images, thus pre-

venting the intensity inconsistency problem at the cost of larger temporal gaps that need

to be bridged. In contrast to this, neighboring channel matching (NCM) approaches esti-

mate temporally dense motion fields between neighboring channels within an image or across

neighboring images, which requires the handling of intensity inconsistency; see also Fig. 2.40

Image Transformation & Intensity Correction: Any NCM method needs to handle the in-

tensity inconsistency. This can be either done by transforming the image in another domain

(e.g. gradients) or by correcting the intensity by some preprocessing procedure.

Intensity Consistent Motion Estimation: Finally, the motion between several channels within

or across the FS images are estimated using a state-of-the-art method (see Sec. 2).45

We present a first thorough analysis and discussion of motion estimation approaches that are

applicable to FS imaging systems. As motion compensation for FS imaging primarily makes

sense for real-time image capturing, we mainly focus on online estimation methods. Thus, the

performance of any FS motion estimation method is defined by both, high motion estimation

accuracy and low processing time.50

This paper provides the following methodological and technical contributions:

• A set of general concepts for motion estimation schemes that are applicable to FS imagery,

refining the basic principles of corresponding channel matching (CCM) and neighboring chan-

nel matching (NCM) (see Sec. 3).

• A benchmark dataset including different test scenarios from both domains, FS multispectral55

imagery as well as phase image sequences from ToF cameras. These data sets include

translational and rotational movements and partially comprise ground truth data. Regarding

multispectral imagery, we also include existing data sets such as Middlebury or MPI Sintel

(Sec. 6).

• An in-depth evaluation with respect to compensation accuracy and processing time of a large60

set of FS motion estimation methods comprising the components listed above (Sec. 7).
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As an overall contribution, this paper provides simplified and quantified means to select the most

promising methods for motion estimation on FS data depending on sample-based application

scenarios.

The remainder of the paper is structured as follows. Sec. 2 gives an overview on existing motion65

estimation algorithms based on optical flow and block matching. Sec. 3 discusses the general

approaches applicable to field sequential motion estimation. In sections 4 and 5 we describe the

image transformation and intensity correction schemes that we use in order to compensate for

the intensity inconsistency of FS imagery. Sec. 6 presents the evaluation of all 379 algorithm

combinations.70

2. State of the Art in Motion Estimation

Optical Flow (OF), Block Matching (BM), and Deep Neural Network based methods are the

most prominent classes of approaches to estimate dense motion fields between consecutive images.

As a fully comprehensive survey of motion estimation techniques is beyond the scope of this work,

interested readers are referred to the work of Fortun et al. (2015), to get deeper insight into75

optical flow computation methods, and to the survey on block-based methods by Jakubowski and

Pastuszak (2012).

In this paper, we focus on methods that allow for sufficiently fast motion estimation, i.e. for

which fast implementations are available or which have the potential to be implemented in a

near-to-realtime fashion. Similar as the Middlebury (Baker et al., 2011) and MPI Sintel (Butler80

et al., 2012) benchmarks, this survey and benchmark paper is open to be extended to any motion

estimation technique, e.g. for more accurate (and potentially slower) approaches in the future.

The original approaches on the calculation of optical flow have been proposed by Horn and

Schunck (1980) and Lucas and Kanade (1981). They assumed that every change in a pixel’s bright-

ness is due to motion. They compute the flow field using brightness gradients and a constraint85

on motion smoothness. Brox et al. (2004) extended this assumption by a gradient constancy con-

straint to deal with slight changes in brightness and an enhanced smoothness assumption. Another

approach by Zach et al. (2007) is based on total variation (TV) regularization, using the L1 norm

(TV-L1) and claims to be very robust against illumination changes and occlusions. Both, Brox

et al. (2004) and Zach et al. (2007) are available as real-time GPU-based implementation. Werl-90

berger et al. (2009) proposed to replace the TV regularization with the Huber norm (Huber-L1).

They presented a library called FlowLib, which contains GPU accelerated implementations of their

algorithm in different variations. Additionally, Werlberger (2012) proposed alternative data terms,

representing the structure of the image rather than intensities. Their normalized cross-correlation

(NCC), census transform and consistency of gradients approaches provide better compensation95

for intensity variations.
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More modern variants that surpass the accuracy of the aforementioned approaches and could

be better suited for FS imagery include the Large Displacement Optical Flow (LDOF) presented

by Brox and Malik (2011) as well as the EpicFlow described by Revaud et al. (2015). Both

methods deal with the common problem of variational optical flow methods, which tend to select100

the local minimum closest to the initialization, i.e., a well matching point with the smallest mo-

tion. For this purpose, LDOF incorporates descriptor matching techniques into the variational

approach to emphasize matches with higher accuracy even in the presence of similar looking im-

age areas. EpicFlow relies on a sparse-to-dense approach which detects and preserves edges. The

FlowFields method presented by Bailer et al. (2015) builds up on the edge preserving interpolation105

of EpicFlow, but improves on its results by using a new hierarchical correspondence field search

strategy based on either census or SIFTflow as data term.

The basic idea of block matching, on the other hand, is to divide an image into macro blocks of

a given block size b and to find the best matching block in a reference image using error functions

such as the sum of absolute differences (SAD).110

Usually, only translational motion is taken into account. To avoid blocking artifacts at object

boundaries, different techniques such as overlapping blocks, adaptive block size, multiscale ap-

proaches and filtering have been proposed (Choi et al., 2007). The search range can be limited to

a maximum displacement range (p-value). A simple full search tests all possible block displace-

ments within this range. More efficient search strategies can be applied, e.g., temporal motion115

prediction, which reduce the number of calculations at the cost of accuracy (Cuevas et al., 2013).

Due to its high degree of parallelism, BM can be efficiently implemented on GPUs or FPGAs to

achieve real-time processing.

Recently, motion estimation based on convolutional deep neural networks emerged (Dosovitskiy

et al., 2015) and soon surpassed OF and BM methods in quality, as demonstrated e.g. by the120

KITTI benchmark (Menze and Geiger, 2015). As acquiring ground truth motion data for training

purposes is challenging, unsupervised variants have been proposed (Ren et al., 2017), but they

do not typically reach the same level of quality. In this paper, we evaluate the recent pre-trained

networks FlowNet2 (Ilg et al., 2017) and LiteFlowNet (Hui et al., 2018) in the context of FS

imagery.125

Steiner et al. (2016) is the first work addressing the motion compensation problem for multi-

spectral short wave infrared (SWIR) FS imagery. They estimate forwards and backwards motion

fields using state of the art OF methods for each pair of related waveband channels, which are

intensity consistent by nature. Due to the interpolation over large time spans, this corresponding

channel matching (CCM) approach yields rather poor results on scenes involving non-constant130

motion.

In the context of Time-of-Flight (ToF) cameras, various motion estimation approaches have
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Figure 2: Flow calculations for two successive FS images with four channels using either corresponding channel

matching (CCM) or neighboring channel matching (NCM).

been proposed. Most of them apply OF(Lindner and Kolb, 2009; Lefloch et al., 2013) or BM (Högg

et al., 2013) on the set of phase images, thus implementing a neighboring channel matching (NCM)

approach. To deal with the intensity inconsistency problem, they estimate motion on normalized135

phase intensity images. A different and computationally very efficient approach to motion com-

pensation has been proposed by Schmidt and Jähne (2011). Their pixelwise artifact correction

(PAC) method detects motion artifacts on pixel level by assuming temporally smooth intensity

variation in the non-motion case: if the first channel contains no discontinuity but at least one of

the following channels does, then the pixel is assumed to be affected by motion.140

3. Field Sequential Motion Estimation Schemes

Consider a field sequential (FS) image stream consisting of images Mi, with i ∈ N being a

sequential number, which themselves contain n channels Ci,w, which were acquired at sequential

times ti,w, w = 0, . . . , n−1, with w being the channel index. Furthermore, a discrete and equidis-

tant acquisition time ∆t = ti,w−ti,w−1 is assumed for each channel and a constant acquisition time145

T = ti,0− ti−1,0 = n∆t for the full image, as illustrated in Fig. 2. Formally, motion estimation for

FS image streams has to compute the displacement vector fields F(i,w)→(i,0) between any channels

Ci,w, w > 0, . . . , n− 1 and the first channel Ci,0, which serves as reference.

By applying a displacement vector field F(i,w)→(i,0) to channel Ci,w, all pixel values p(x, y) from

Ci,w are shifted according to the two-dimensional displacement vectors ~d(x, y) = F(i,w)→(i,0)(x, y).150

In the final “corrected” images C̃i,w, the positions of moving objects will match those in the

reference channel Ci,0, if the motion estimation has been accurate.

When optical flow is calculated directly between adjacent channels of the image sequence,

i.e. between Ci,w and Ci,w+1, purely intensity-based optical flow algorithms will produce invalid

displacement vectors due to the violation of the intensity consistency assumption. In the follow-155

ing we describe two fundamental concepts to overcome this problem, i.e., corresponding channel

matching (CCM; see Sec. 3.1) and neighboring channel matching (NCM; see Sec. 3.2), and discuss
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approaches to modify existing motion estimation techniques in order to be applied with either

concept.

3.1. Corresponding Channel Matching (CCM)160

By using two consecutive FS images Mi−1 and Mi and estimating motion only between pairs

of corresponding channels, as shown in Fig. 2, the violation of the intensity inconsistency problem

can be avoided. Despite the larger displacement between the compared images, state-of-the-art

motion estimation techniques will most likely produce accurate displacement vectors based on

this method. Assuming a constant and linear motion between corresponding channels Ci−1,w and

Ci,w, every flow vector F(i−1,w)→(i,w)(x, y) is regarded as a linear combination of n identical partial

vectors describing a pixels movement between Ci,w and Ci,w−1,

F(i,w)→(i,w+1)(x, y) ≡ 1

n
F(i−1,w)→(i,w)(x, y). (1)

Bidirectional, All Channel Optical Flow (CCM-B). The CCM method presented by Steiner et al.

(2016) calculates a forward flow F(i−1,w)→(i,w) and a backward flow F(i,w)→(i−1,w), w = 1, . . . , n−1

for each pair of channels 〈Ci−1,w, Ci,w〉, w > 0. Both forward and backward flow are applied with

weights (n−w)
n and w

n in order to interpolate a motion corrected channel C̃i,w, w = 1, . . . , n − 1,

for the reference time ti,0:

C̃i,w = (n−w)
n F(i−1,w)→(i,w)[Ci−1,w]⊕ w

nF(i,w)→(i−1,w)[Ci,w]. (2)

The bidirectional interpolation function ⊕ calculates the intensity of every pixel in C̃i,w by aver-

aging the corresponding pixel values in both Ci−1,w and Ci,w. In conjunction with the detection

of occlusions, this function provides high interpolation accuracy. The main disadvantage of this

approach is its extremely high computational complexity, as it requires 2 · (n− 1) OF calculations

for each FS image.165

In the following, we discuss alternative approaches that reduce computational complexity, but

generally also reduce the accuracy of compensation; see Sec. 7.

Unidirectional, All Channel Optical Flow (CCM-U). This approach simplifies the interpolation

method by using only one OF calculation for each pair of channels Ci−1,w and Ci,w, w = 1, . . . , n−

1. It uses either the forwards or backwards flow depending on the current channel, to keep the

length of the resulting motion vectors and, thus, the expected error as small as possible:

C̃i,w =


w
n · F(i,w)→(i−1,w)[Ci,w] if w ≤ n

2

(n−w)
n · F(i−1,w)→(i,w)[Ci−1,w] if w > n

2

(3)
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Unidirectional, Partial Channel Optical Flow (CCM-1 / CCM-2). The number of OF calculations

can be further decreased by interpolating a given flow field to subsequent channels. Assume that

the backwards flow F(i,u)→(i−1,u) for channel u is known and the motion is constant during the

acquisition time of both FS images. Then, the backward flow F(i,v)→(i−1,v) for channel v > u can

be interpolated using F(i,u)→(i−1,u):

F(i,v)→(i−1,v) = − v−u
n · F(i,u)→(i−1,u)[F(i,u)→(i−1,u)]. (4)

The motion corrected image C̃i,v is calculated according to Eq. 3 (case w ≤ n
2 ). This way, the

number of required optical flow calculations for each cube can be reduced down to one (CCM-1).

However, the more flow fields are interpolated from a previous one, the higher the approximation170

error will be if the assumption of constant motion does not hold true. Neglecting this fact, one

calculated flow field could even be extrapolated over several image cubes, further reducing the

processing time at the cost of an even higher approximation error. In practice and depending

on the amount and nature of expected motion in the scene, it seems to be a better choice to

interpolate only a limited number of flow fields from others.175

In the case of four (or more) channels per FS image, a more accurate interpolation can be

achieved if a second flow field F(i,w)→(i−1,w) of a subsequent channel w is used to bidirectionally

interpolate F(i,v)→(i−1,v), u < v < w (CCM-2):

F(i,v)→(i−1,v) =− v−u
n · F(i,u)→(i−1,u)[F(i,u)→(i−1,u)]⊕ w−v

n · F(i,w)→(i−1,w)[F(i,w)→(i−1,w)]. (5)

3.2. Neighboring Channel Matching (NCM)

The NCM approach commonly applied to ToF images (Lindner and Kolb, 2009; Lefloch et al.,

2013; Högg et al., 2013) estimates motion fields F(i,w)→(i,w−1) between adjacent channels Ci,w, w >

0 directly. To compensate motion in Ci,w, all partial flow fields F(i,w)→(i,w−1) are applied to Ci,w

sequentially:

C̃i,w = F(i,1)→(i,0)[. . . [F(i,w)→(i,w−1)[Ci,w]]]. (6)

NCM is a potentially more accurate alternative to CCM, as it keeps the object displacement

minimal for each flow calculation and allows to compensate dynamic changes of motion speed and

direction during the acquisition of the FS image. Obviously, though, it has to handle the intensity

inconsistency problem between different spectral channels.180

The expected total interpolation error can further be reduced by estimating motion between

adjacent channels of two neighboring FS images forwards or backwards towards the closest refer-

ence channel; see Fig. 2. The compensated image C̃i,w can then be found by sequentially applying
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the resulting flow vectors either forwards or backwards:

C̃i,w =

F(i,1)→(i,0)[[F(i,w)→(i,w−1)[Ci,w]]] if w ≤ n
2

F(i−1,n−1)→(i,0)[[F(i−1,w)→(i−1,w+1)[Ci−1,w]]] if w > n
2

(7)

4. Image Transformation and Correlation

In general, the realization of NCM methods requires handling the intensity differences between

neighboring channels. Here, three different types of operations can be applied:

1. transformation of the image (channel) into another domain (e.g. gradients),

2. finding dense correlations between neighboring channels (using, e.g., cross-correlation), or185

3. applying intensity correction (using, e.g., equalization)

Even though intensity transformation and correlation approaches can be applied sequentially, this

is rarely done in literature. Therefore, we decided to apply only one of the methods and describe

the related methods in this section. Intensity correction methods are summarized in Sec. 5.

The following image transformation approaches are evaluated in this respect, in Sec. 7.190

Census Transform, proposed by Zabih and Woodfill (1994), describes the local spatial structure

around a specific pixel of an image by calculating a binary vector px,y for each pixel: if a

neighboring pixel has a lower intensity than px,y, a 1 will be added to the vector, otherwise a

0. After the transformation, correspondence is calculated by finding the minimum Hamming

distance.195

Image Gradients describe the intensity variations in a pixel’s local neighborhood and can be

computed, e.g., using a Sobel filter (Jähne, 2005); see Fig. 3 f).

We investigated the following correlation based approaches that can be applied to two images

in order to solve the intensity inconsistency problem:

Mutual Information is based on the entropy of an image pair and yields a high value if the200

information gain of a new image in addition to an existing image is low, i.e., if two images

of the same scene are geometrically aligned. Mutual information is known to be robust

against non-linear intensity relationships and has been proposed for both multispectral and

multimodal image registration applications (Zitova and Flusser, 2003; Kern and Pattichis,

2007). It can be used as a cost function for block matching, but it cannot be linearized for205

the use in OF algorithms.
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Cross-Spectral Feature Detection is frequently used in multispectral or multimodal image

registration (Zitova and Flusser, 2003), where image transformation or warping parameters

are estimated based on detected features. While these methods cannot be used to estimate

dense motion fields between two images directly, they might be used for the registration of210

blocks in block matching algorithms.

Normalized Cross-Correlation (NCC): Cross-correlation is commonly used as cost function

in order to find the position of specific features in an image (Jähne, 2005). NCC addi-

tionally normalizes the image which improves the robustness against illumination changes.

NCC can be used as an inverse cost function for BM, as well as a linearized data term in215

OF (Steinbruecker et al., 2009; Werlberger, 2012).

Preliminary Method Selection. As we face the fundamental problem of combinatorial complexity

when evaluating a large amount of approaches making up the final motion estimation method,

we executed preliminary tests in order to exclude approaches for which we observe significant

drawbacks in our context of motion estimation for FS imagery. Census transform, image gradients220

and cross-correlation deliver valuable results, so we use them in our exhaustive evaluation in

Sec. 7. Applying mutual information was found to be computationally extremely expensive2.

Thus, we excluded mutual information as its application to a larger set of test sequences and

motion estimation methods would be impracticable. Cross-spectral feature detection delivered

significantly inferior results when testing with some of the our multispectral data sets from Sec. 7.225

Thus, we also excluded this method from our full evaluation.

5. Intensity Correction Methods

There are several ways to address the intensity inconsistency problem in case of NCM motion

estimation using intensity correction approaches. In the following, we assume a grayscale image

I that is intensity corrected, resulting in Ĩ. Fig. 3 illustrates their effect on the channels of an FS230

image.

The following approaches to reduce the intensity inconsistency between the spectral channels

are evaluated in Sec. 7.

Global Linear Normalization is a simple linear mapping of the used intensity range [Imin, Imax]

to a new range [0, Ĩmax] (Petrou and Petrou, 2010); see Fig. 3 b).235

2We tested the fast approximative implementation from Shams and Barnes (2007) in combination with block

matching. Here, the average execution time for a single image pair with a resolution of 640 × 480 pixels and a

(small) search window of 11x11 pixels requires ≈ 300s on a typical PC.
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(a) original (b) global normalization

(c) local normalization (d) histogram equalization

(e) CLAHE

(f) Gradients

a) b)

c) d)

e) f)

Figure 3: Examples of methods applied on an FS image with three channels: a) original image; b) global normal-

ization; c) local normalization; d) histogram equalization; e) CLAHE; f) gradients.

Local Linear Normalization compensates for non-uni-form illumination within an image (Sage,

2011); see Fig. 3 c). Using the windowed mean mI(x, y) and variance σI(x, y) for each pixel

(x, y), the normalized intensity Ĩ(x, y) computes as:

Ĩ(x, y) =
I(x, y)−mI(x, y)

σI(x, y)
. (8)

Histogram Equalization uniformly distributes the intensity values over the available intensity

range (Petrou and Petrou, 2010); see Fig. 3 d). It normalizes the histogram H(i) of an input

image and calculates the cumulative distribution H ′(i), which is used to remap the intensity

values:

Ĩ(x, y) = H ′(I(x, y)) with H ′(i) =
∑

0≤j≤i

H(j). (9)

Contrast Limited Adaptive Histogram Equalization (CLAHE) performs the histogram equal-

ization in a local per-pixel window. As this operation tends to amplify noise in homogeneous

areas, the CLAHE algorithm introduces a clipping limit for histogram redistribution (Pizer

et al., 1987); see Fig. 3 e).

6. Evaluation Setup240

Datasets. For evaluation of the motion estimation methods for FS imagery we have prepared five

different types of datasets. In all cases the number of channels is n = 3 or n = 4.

Middlebury: All Middlebury evaluation samples with at least 8 frames from the Middleburry

benchmark3 by Baker et al. (2011).

3see http://vision.middlebury.edu/flow
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(a) Linear stage. (b) Rotating wheel. (c) Head tilting. (d) Walking.

Figure 4: Examples of the test scenarios included in the FS multimodal dataset

(a) Phase image 0. (b) Phase image 1. (c) Phase image 2. (d) Phase image 3. (e) Range image.

Figure 5: Sequence of four simulated ToF raw phase images (channels) and the resulting depth frame.

Please note that sequences with less than 8 frames, as well as other, frequently used datasets245

such as KITTI that do not provide RGB sequences of sufficient length cannot be incorporated

in our evaluation.

From each of the sample sequences we derive an RGB FS image sequence with ground truth

images by dropping two of the three color channels yielding a 3-channel FS image sequence.

Furthermore, we generate RGB-R FS image sequences that contain a fourth channel gen-250

erated by converting the RGB image into a gray scale image with reduced brightness. This

channel resembles the so-called dark reference frame commonly acquired in active multispec-

tral camera systems in order to subtract background illumination.

MPI Sintel: The MPI Sintel dataset4 by Butler et al. (2012) (marked as “final”) are used in

the RGB and RGB-R dataset.255

Own sRGB: This dataset is acquired using an active multispectral SWIR video sequence for

three different scenarios (see Fig. 4): Linear stage (laterally moving test pattern), rotating

wheel, and human movement showing a person’s upper-body performing several movement

patterns. We generated FS data RGB, RGB-R analogous to Middlebury and MPI

Sintel.260

Short Wave Infrared (SWIR): The human movement data in Own sRGB provides the SWIR

test data. Ground Truth is available using the additional RGB video stream (see below for

4see http://sintel.is.tue.mpg.de/
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details).

Time-of-Flight (ToF): ToF ground truth is extremely hard to access, as the channels, com-

monly called phase images in ToF imaging, are directly processed in the camera and there265

is no option to either trigger the exposure of phase images nor to access the explicit timing

of the exposition. Therefore, we use simulated ToF imagery based on Lambers et al. (2015);

Bulczak et al. (2018), for which ground truth motion fields can be explicitly extracted. We

used two sample scenes, one with a lateral moving object and one with a rotating star-like

shape. Both scenes have been acquired with two different velocities.270

The simulator generates four phase images (channels) per depth frame and includes noise

and motion artifacts (see Fig. 5). We deactivate the simulation of background intensity in

order to be able to apply the same quality measures as for the multispectral data sets that

do not include this intensity bias.

Note that all datasets except MPI Sintel contain indoor scenes as motion estimation in the context275

of both multispectral and ToF sensors typically targets such scenes.

Details for RGB and MS Dataset Acquisition. The multispectral datasets have been captured

using an active FS-based SWIR camera system with three wavebands and a dark reference channel

(-R), in combination with a high quality RGB camera with the same frame rate. The cameras

were arranged in a staring imager configuration in a well-lit environment, which is common for FS280

NIR imaging systems. Although the subject is the same in all of the human movement sequences,

different movement patterns have been captured to provide diversity.

Any negative effect caused by demosaicing of the RGB camera’s Bayer pattern is accounted

for by recording in high definition with 1920x1080 pixels and downsampling the images to the

resolution of the SWIR camera’s images, i.e. 636x508 pixels.285

The ground truth for our MS dataset is created from the additional RGB sequences. As the

SWIR camera system uses n = 4 channels, the RGB camera simultaneously acquires four virtual

channels, i.e. R, G, B, and dark reference (-R). For evaluation, we use a cross-compensation

approach that applies the optical flow calculated for the SWIR imagery to the RGB image sequence

and compares the result to the corresponding RGB full frame.290

To match the field of view of the RGB camera to the SWIR camera, the RGB imagery is shifted

and cropped appropriately. However, the baseline between both cameras of ≈ 20cm induces a

slightly different perspective and thus a mismatch in the motion fields. To estimate this mismatch,

we recorded a second dataset where the SWIR camera was replaced by a second RGB camera.

Applying the same cross-compensation procedure to this stereo-like setup, we found a baseline295

error for the comparison IEbase ≈ 2.7. As IEbase is by far lower than the error of the best FS

13



motion compensation method with IE ≈ 6.6, we find our cross-compensation approach to be valid

within this range.

Quality Measures. The objective comparison of a compensated image with the ground truth image

is performed using the following quality measures:300

1. Interpolation Error (IE) (Baker et al., 2011) is defined as the root mean square of the L2

norm of the vector of spectral channel differences between the interpolated and ground truth

images, analog to the Middlebury OF evaluation,

2. Structural Similarity Index Metric (SSIM), which describes the similarity of images based on

structural information and is inspired by the human visual perception (Wang et al., 2004),305

and

3. Spectral Error (SE), which we define as the root mean square of all pixel’s spectral angular

distance (Petrou and Petrou, 2010).

7. Results and Discussion

With 379 combinations of methods and preprocessing options, the total amount of results is310

very extensive. Here, we present only a representative selection and summarize the findings. The

complete results can be found in the digital supplemental material, which presents all details about

influences of individual steps and changes of preprocessing methods or algorithms to the results.

Table 1 states all methods and algorithms applied and explains the abbreviations used in the

following evaluation. CCM and NCM are the General Concepts applicable to motion estimation315

for FS imagery. For CCM, we need to specify the Motion Estimation Scheme that defines how

the full flow for an FS image frame is computed, e.g., using the uni- or bidirectional approach (see

Sec. 3). Remember that CCM-2 only makes sense if we have four (or more) channels per FS image,

thus CCM-2 can only be applied to RGB-R and ToF data sets. Either of the resulting concept-

scheme combinations is applied to the original or a transformed version of the channels (Image320

Transformation; see Sec. 4) that has optionally been processed by an Intensity Correction

method (see Sec. 5). The resulting combination can be implemented using any kind of BM or

dense OF algorithm. In this work, GPU-accelerated implementations of Brox, TV-L1, Lucas-

Kanade (LK), LDOF and Huber-L1-based optical flow, as well as full search and fast approximate

BM algorithms from standard libraries (OpenCV 2.4.11 and FlowLib 3.0) are used. They are325

complemented by a (multithreading) CPU implementation of FlowFields, which is not currently

available as a GPU-accelerated version. All Brox- and FlowLib-based algorithms have been applied

twice, once with recommended (quality-oriented) parameters and once with parameters optimized

14



General concept

CCM corresp. channel matching

NCM neighboring channel matching

CCM Motion Estimation Scheme

-B all channels bidirectional

-U all channels unidirectional

-2 partial (2 channels)

-1 partial (1 channel)

Image Transformation

-I intensity (i.e. no transformation)

-TG transformation to gradients

-TC transformation to census

-C correlation

Intensity Correction

N global normalization

L local normalization

H histogram equalization

C contrast limited adaptive

histogram equalization

Algorithms

BM Block Matching, sum of absolute differences

FBM Fast Block Matching, BM with restricted set of candidates

LK Lucas-Kanade OF

Br Brox OF

TVL1 TV-L1

HL1 Huber-L1

FHL1 Fast Huber-L1, parameters optimized for speed (Werlberger et al., 2009)

HQS Huber-L1 with quadratic fitting, sum of absolute differences (Werlberger, 2012)

H1C Huber regularization term, L1 data term, compensation of brightness constancy violations

H2C Huber regularization term, L2 data term, compensation of brightness constancy violations

TGVC 2nd order Total Generalized Variation w. Census transform (Bredies et al., 2010; Ranftl et al., 2014)

FF FlowFields

LDOF Large Displacement Optical Flow

PAC Pixelwise Artifact Correction

FN FlowNet2 (Ilg et al., 2017)

LFN LiteFlowNet (Hui et al., 2018)

* = optimized for speed by authors of this paper, see Sec. 7

** = part of algorithm

Table 1: Abbreviations used in Tab. 2, Fig. 6 and Fig. 7, 8, 9, 10, 11.
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for speed, which is denoted with a *. Optimal parameters have been found experimentally5.

As some of the algorithms already include an image transformation, e.g. to gradients, we330

explicitly mark this with **. In our evaluation we also feed gradient images to these algorithms,

leading to an overall image transformation of type TG+TG**. Some algorithms internally use

intensity and gradient images for estimating motion, denoted as (I+TG)**. If fed with gradient

images, these algorithms read TG+(I+TG)**.

Computational efficiency is measured on a standard desktop computer with a recent Intel CPU335

and nVidia graphics card using the FS multispectral RGB-R datset. Note, however, that there is

some variation in system setup between methods, so the timing information in Tab. 2 and Fig. 6

should be interpreted as a rough estimate.

Analog to the Middlebury evaluation, all methods were ranked for each test sequence based

on all described quality measures. Tab. 2 shows the average ranks of the top-20 combinations of340

algorithms and approaches with respect to multispectral dataset (including Own sRGB, Mid-

dlebury and MPI Sintel) in the upper part. The middle part of Tab. 2 shows the ranking with

respect to the ToF data set. For comparison, results of the original algorithms without opti-

mization for FS data sequences and different CCM optimizations have been added in the lower

part. In addition, Fig. 6 allows to easily compare the motion compensation performance to the345

computational efficiency of the different methods. A higher resolution plot can also be found in

the supplemental material. All abbreviations are explained in Tab. 1.

To illustrate the performance of different approaches, example images from each dataset and

a selection of motion compensation results are shown in Fig. 7, 8, 9, 10, 11.

Comparing CCM and NCM. The multispectral data sets (including Middlebury and MPI Sin-350

tel) are handled best with NCM methods. This is mainly due to the fact, that multispectral

data sets exhibit less intensity inconsistencies than ToF data. Furthermore, non-linear motion

can be better captured using neighboring channel matching (NCM) due to shorter interpolation

intervals. CCM-methods, on the other hand, produce primarily superior results on ToF data sets.

However, several NCM methods work well on ToF data sets. Namely NCM-TG+TG** with the355

HL1 algorithm, which is among the top-20 for both, multispectral and ToF.

Varying the number of OF in CCM. Tab. 2 includes CCM results using all channels bi- (CCM-

B) and unidirectional (CCM-U), first and last channel (CCM-2), as well as first channel only

(CCM-1) based on the Brox algorithm that performs best for CCM. For all algorithms, a reduc-

tion of the number of OF calculations decreases the processing time almost proportionally, while360

5BM: search field parameter p = 20, block size bs = 25; Brox: 3 instead of 10 inner and solver iterations each;

FlowLib: 3 instead of 10 iterations and warps each.
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Channel 0 Channel 1 Channel 2 Uncompensated

CCM-1 TV-L1 CCM-B FN CCM-B TV-L1 NCM-TG N FN

Figure 7: Examples for an image before and after motion compensation (dataset Middlebury)

Channel 0 Channel 1 Channel 2 Uncompensated

CCM-B LFN CCM-B TV-L1 NCM-I LFN NCM-TG L LFN

Figure 8: Examples for an image before and after motion compensation (dataset MPI Sintel)
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Channel 0 Channel 1 Channel 2 Uncompensated

PAC NCM HL1 CCM-U Br CCM-U BM

CCM-B Br CCM-1 Br NCM-TG N LK* NCM-TG**

Figure 9: Examples for an image before and after motion compensation (dataset Own sRGB)
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Channel 0 Channel 1 Channel 2 Channel 3

CCM-B FN Channel 1 CCM-B FN Channel 2 CCM-B FN Channel 3

NCM-TG LFN

Channel 1

NCM-TG LFN

Channel 2

NCM-TG LFN

Channel 3

Figure 10: Examples for an image before and after motion compensation (dataset SWIR)

Channel 0 Channel 1 Channel 2 Channel 3

Uncompensated CCM-B LFN CCM-B TV-L1 NCM-TG H FN

Figure 11: Examples for an image before and after motion compensation (dataset ToF)
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simultaneously increasing the error in a very predictable way; see Fig. 6.

Handling of Inconsistent Intensities with NCM. Without image transformation and intensity cor-

rection, only the Brox algorithm (NCM-I-Br) is capable of handling the inconsistent intensities

with NCM-I methods to some degree. Applying image transformation only (NCM-∗-<none>),

transformation to gradient, potentially applied twice, i.e. during preprocessing and, again, within365

the algorithm itself, clearly yields the best results. The census transformation and correlation-

based methods (NCM-C) cannot compete. Applying intensity correction only (NCM-I-∗), Brox

and LDOF perform well on multispectral data if global or local normalization is applied.

Influence of the OF Algorithm. Ignoring image transformation and intensity correlation-based,

there is no clear tendency in terms of OF algorithms, neither for the multispectral nor for the ToF370

data sets. While LDOF, as one of the more modern approaches is quite successful on multispec-

tral data sets, more classical approaches like Brox and Huber-based algorithms yield comparable

results; on ToF data sets they even dominate. Surprisingly, the most modern algorithm in the

evaluation, FlowFields, performed worst. A possible explanation for this finding could be that it’s

SIFTflow matching approach is optimized for color rather than grayscale images.375

When taking processing time into account, the normal and speed-optimized Huber-L1 (HL1,

FHL1), as well as Lucas-Kanade optical flow (LK) deliver outstanding results.

Pixelwise Artifact Correction (PAC). This approach from Schmidt and Jähne (2011) is the only

one specifically developed to correct ToF raw data. It performs comparably bad regarding quality,

but the approach is computationally very effective and fast, although it does not rely on GPU380

acceleration.

Deep Neural Networks. The deep neural network based methods FlowNet2 (FN) and LiteFlowNet

(LFN) both perform well. Note that we use publically available pre-trained implementations of

both. These have been trained on RGB data, whereas here we apply them to individual channels

of our FS imagery which are interpreted as grayscale images. Training either method specifically385

for a given FS type (multispectral or ToF) will likely result in improved quality.

8. Conclusions

This paper presents and evaluates approaches to apply existing motion estimation methods

to field-sequential (FS) imagery, originating from multispectral dynamic scene captures or Time-

of-Flight cameras. The major challenge here is the assumption of consistent intensities for corre-390

sponding pixels made by most motion estimation approaches, which is in general not fulfilled for

adjacent channels of FS imagery.
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While corresponding channel matching (CCM) methods estimate motion fields between corre-

sponding channels of successive FS images to avoid intensity inconsistencies, neighboring channel

matching (NCM) estimates motion fields between neighboring channels within a single FS image,395

which requires a successful handling of inconsistent intensities between the channels but (poten-

tially) benefits from interpolation for shorter time intervals and displacement vectors.

We combine existing motion estimation schemes with known image transformation and/or

intensity correction methods, leading to an overall set of 379 combinations of FS motion compen-

sation approaches, implemented using state of the art algorithms.400

We present the new FS database containing datasets with ground truth acquired using RGB,

multispectral SWIR, and ToF camera simulators, which will be available to the scientific public

in order to promote further research in this field. Our evaluation also involves data from the

Middlebury and the MPI Sintel datasets.

Due to the variety in the FS database that includes also strongly intensity inconsistent ToF405

phase images as well as moderate inconsistent multispectral imagery, there is not “the best”

method superior to others. There is, however, a clear tendency, that NCM methods are more

successful for moderate intensity inconsistency. For strong intensity inconsistency, CCM methods

perform best, while NCM in combination with gradient transformation (potentially applied twice)

still give good results.410
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