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ABSTRACT
This paper presents a light-weight process for 3D reconstruction and measurement of chronic wounds using a com-
monly available smartphone as an image capturing device. The first stage of our measurement pipeline comprises
the creation of a dense 3D point cloud using structure-from-motion (SfM). Furthermore, the wound area is seg-
mented from the surrounding skin using dynamic thresholding in CIELAB color space and a surface is estimated
to simulate the missing skin in the wound area. Together with a mesh reconstruction of the wound, the skin surface
and the segmented wound is used to calculate the wound dimensions, i.e., its length, surface area and volume. We
evaluate the presented pipeline using three wound phantoms, representing different stages in healing, and compare
the subsequently scanned and measured wound dimensions with manually measured ones.
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1 INTRODUCTION
Chronic wounds are a major and growing health is-
sue worldwide. Besides increasing mortality and treat-
ment expenses, they cause substantial pain and distress
due to, e.g., significantly reduced mobility, lower self-
esteem and social isolation [1]. As 1-2% of the popula-
tion [1, 2] are affected by chronic wounds, they are also
considered a “silent epidemic”. Since chronic wounds
mainly affect elderly patients, the demographic shift
within Western societies causes their increasing dis-
semination [3].

The most common type of chronic wounds are venous
and arterial ulcers, which primarily affect elderly pa-
tients. Diabetic ulcers, one of the characteristics of the
diabetic foot syndrome and a frequent long-term result
of diabetes mellitus, are also very common. Immo-
bile or paralyzed patients often develop pressure ulcers,
which are caused by restricted blood flow due to pro-
longed pressure between repositioning intervals. The
tropical disease leishmaniasis, transmitted by the bite
of the female sandfly, is another major cause of cuta-
neous chronic wounds [4].

Evidently, 3D wound measurement approaches are ad-
vantageous as they offer much more insight into wound

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

healing, e.g. for deep ulcers, where much of the early
healing progress takes place at the bottom of the wound
bed [5]. Therefore, an affordable, light-weight 3D
wound capturing system has a lot of potential, espe-
cially against the background of a growing number of
elderly patients and the requirement to provide treat-
ment in underdeveloped and/or rural regions [4].

Wound healing is a highly complex process and the
treatment of chronic wounds requires close monitoring
over a long time period, sometimes years. Besides care-
ful qualitative observation and documentation by med-
ical staff, reliable quantitative measurements are very
important in order to monitor the wound’s healing, i.e.
its change in size and shape over time. Numerous dif-
ferent measurement techniques exist, ranging from very
simple ruler-based size estimates to advanced multi-
sensor 3D systems utilizing state of the art computer
vision algorithms. However, simple methods are un-
reliable, imprecise, and uncomfortable for the patient,
while advanced systems are often expensive, inefficient
to use, and no gold standard has yet been established
for wound measurement so far [6].

Current computer vision based approaches either use
stereo vision [7], also available in commercial sys-
tems like MAVIS II1 or Time-of-Flight (ToF) measure-
ments [8]. However, stereo imaging as well as ToF
range measurement requires specific camera devices
and neither stereo nor ToF can be considered ubiqui-
tous sensors, so far. Furthermore, compared to current
RGB cameras in mobile phones, ToF suffers from low
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image resolution and from depth measurements errors
due to subsurface scattering [9].

In this paper, we present a light-weight wound mea-
surement system based on RGB images captured using
standard smartphone cameras, thus solving the wound
measurement problem within the emerging domain of
mobile health (mHealth) [10]. The integrated sensors
in smartphones deliver images of decent quality, allow-
ing for high quality photography at very low cost.

Our 3D wound reconstruction pipeline comprises
Structure-from-Motion (SfM) as monocular 3D-
reconstruction technique. The further processing of the
resulting sparse point clouds involves a segmentation
into skin and wound regions, the extraction of the
wound’s contour, and a mesh reconstruction of the
wound. Based on the resulting 3D reconstructions
of wound and a surface fitting of the skin in order
to estimate the healthy state, our approach performs
automatic length, area and volume measurements.
For evaluation, we produced a sequence of wound
phantoms for which we acquired several series of
images.

2 PRIOR WORK
Mukherjee et al. [11] give an overview on contact-free,
sensor-based techniques for wound measurement, dis-
cussing optical approaches as well as approaches that
involve more exhaustive sensors such as hyperspec-
tral, thermal and laser doppler imaging or confocal mi-
croscopy. While 2D wound measurement approaches
have been developed for more than two decades and
are still being researched [12, 13], this paper focuses on
optical approaches for 3D wound measurement.

The idea of using standard 2D RGB imagery for 3D
wound reconstruction and measurement dates back
more than one decade. These early approaches recon-
struct sparse 3D point clouds from stereo or multi-view
imagery taken from the wound. Albouy et al. [14]
use a Harris corner detector, cross-correlation, out-
lier removal and homography estimation in order
to compute a sparse 3D point cloud that is used for
estimating the wound’s volume. Treuillet et al. [5] use
stereophotogrammetry in order to reconstruct a sparse
3D point cloud. More recently, general approaches for
3D geometry reconstruction using 2D images acquired
with smartphones have been proposed [15, 16]. While
Kolev et al. [15] create a point-based 3D model by
integrating multiple stereo-based depth hypotheses into
a compact and consistent 3D model, Muratov et al.
[16] use an SfM like approach that involves additional
IMU data. Sirazitdinova and Deserno [7, 17] propose
to use similar approaches in 3D wound assessments.
They opt for motion stereo [18] in order to reconstruct
3D geometry from 2D RGB imagery acquired with
a smartphone. So far, there is no publicly available

documentation regarding the system’s implementation
or evaluation.

Gaur et al. [8] describe an alternative 3D wound mea-
surements system based on RGB-D imagery captured
with an Intel ToF camera. After registration of the RGB
and the depth images, the wound is segmented directly
in image space using standard filter and morphological
operators. Then, they identify the wound’s boundary
pixels and fit a plane to the boundary’s range data. Both,
the wound and the estimated healthy skin are modeled
as quadratic surfaces, in order to measure the wound’s
volume.

Summary. Current 3D wound measurement approaches
mainly rely on special-purpose hardware for wound ac-
quisition, such as stereo vision or time-of-flight cam-
eras. While early approaches, involving 2D RGB im-
ages, deliver only sparse 3D geometric information and
are therefore rather inaccurate, there are no reports on
successfully applying recent improvements in dense 3D
scene reconstruction from RGB images on mobiles to
3D wound measurement. In this paper we present an
SfM pipeline that can be successfully applied to 3D
wound reconstruction.

3 METHOD
In this section, we present our light-weight wound mea-
surement system. Our approach uses a sequence of
RGB images of a chronic wound that has been captured
using standard smartphone cameras. Fig. 1 depicts the
main components of our wound measurement system
that can be summarized as follows:

Acquisition: A sequence of images or a video is taken
from the considered chronic wound. Additionally,
a marker is located close to the wound in order to
solve for the scale ambiguity inherent to SfM surface
reconstruction.

Structure from Motion (SfM): Based on features ex-
tracted from the input images, image pairs with large
overlap are identified, camera poses are estimated
and a 3D point cloud is computed (see Sec. 3.1).

Point Cloud Preprocessing: Depending on the input
imagery, the resulting raw point cloud contains a sig-
nificant number of outliers that are removed in this
stage. Furthermore, the scale ambiguity is resolved
using the marker that has been placed in the scene
(see Sec. 3.2).

Wound Segmentation & Fitting: The clean point
cloud is segmented in wound and skin using a
color thresholding and clustering. Furthermore, the
contour of the wound is extracted and a surface
is fitted to the skin region, which represents the
condition of healthy skin (see Sec. 3.3).
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Figure 1: Overview of the proposed 3D wound reconstruction method.

Wound Measurement: In this stage the segmented
wound points are converted into a mesh. Based on
the meshed wound region, the wound’s size, area
and volume are deduced (see Sec. 3.4).

3.1 Structure from Motion (SfM)
Structure-from-Motion (SfM) is a well established
technique from scene reconstruction that uses monoc-
ular RGB image sequence as input. This section
briefly describes the main concept behind SfM based
on Schoenberger and Frahm [19]. The SfM process
consists of two main stages, correspondence finding
and incremental reconstruction.

Correspondence Finding. Given a set {Ii | i = 1 . . .NI}
of unordered images, feature sets Fi = {(x j, f j) | j =
1 . . .NFi} representing features f j at image locations x j
are extracted for each image Ii. Frequently, the scale-
invariant feature transform (SIFT) is used [20]. Based
on the feature sets Fi, image pairs with sufficient spa-
tial overlap, i.e. with sufficient common features are
identified using, e.g., the Lukas-Kanade tracker [21].
Afterwards, mismatching feature correspondences are
removed using RANSAC, and the pairwise image trans-
formations are established.

Incremental Reconstruction. The scene model is de-
scribed by a set of points X and a set of camera poses
P . SfM is initialized with a carefully selected image
pair and its reconstructed 3D points using triangulation.
Further images are registered using the feature corre-
spondences. As the incremental nature of this approach
and the inherent imprecision of point estimates causes
accumulation of errors and point drift, the reconstruc-
tion parameters, i.e., the camera poses P and the 3D
point locations X are regularly refined using bundle
adjustment [22]. This process minimizes the reprojec-
tion error applied to each 3D point Xcorr

j ∈ X corre-
sponding to the feature location xxx j in image Ii, i.e.

E =
NI

∑
i=1

NFi

∑
j=1

ρ
(
‖π(Pi,Xcorr

j )−x j‖2
2
)
, (1)

where π is the projection function defined by the cam-
era pose PPPi ∈P for image Ii and ρ is a loss function.
This results in a non-linear optimization process.

3.2 Point Cloud Preprocessing
As the SfM method is intrinsically scale ambiguous,
wound measurement requires proper rescaling of the
scene, i.e. of the point cloud reconstructed by SfM.
Therefore, we place a 30× 30 mm ArUco marker [23]
that is printed on a 45× 45 mm board close to the
wound. Due to the high contrast of the marker, the
marker’s points can be segmented easily using fixed
color thresholds. Afterwards, a plane is fitted to the
marker points using RANSAC and the scene is trans-
formed into the marker’s plane. Then, the marker di-
mensions are determined and the point cloud is rescaled
using the resulting isotropic scale factor. Finally, the
marker region is removed from the point cloud using a
simple spatial cropping.

Although SfM produces dense and comparably precise
point clouds, they frequently contain patches of out-
lier points that are caused by faulty correspondences
due to, for example, specular reflections in the input
images. Most outliers form small clusters or spurious
sheets disjunct from the main point cloud representing
the captured object. Therefore, we apply a clustering
based on the density-based algorithm proposed by Es-
ter et al. [24].

3.3 Wound Segmentation, Surface Fitting
& Meshing

In order to perform wound measurement, the wound
must be segmented from the surrounding skin. As the
wound’s boundary does not necessarily have distinct
geometric features, we opt for segmentation using color
features. Therefore, we transform the point colors into
the CIELAB color space since it emphasizes the color
difference between healthy skin and wound tissue [25]
(see Fig. 2a). The color disparity in the b∗-channel al-
lows for a clear distinction between wound and skin us-
ing a simple dynamic threshold applied to the histogram
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Figure 2: Segmentation and surface fitting: The color mapped visualization of the CIELAB b∗ channel (2a), the
histogram with threshold for segmentation (2b), and the finally segmented wound points with the contour points
(green) and the fitted skin surface (2c).

of all colors in the point cloud using the triangle algo-
rithm [26] (see Fig. 2b).

Color segmentation may result in spurious points that
have been wrongly classified. This mainly happens in
the wound region in which points occasionally are clas-
sified as skin. In order to remove residual clusters or
falsely classified points in either region, we extract the
largest connected skin and wound region using the clus-
tering approach from Ester et al. [24].

After segmentation, we identify the points on the
wound’s contour. Therefore, we compute the 4-
neighborhood for each point and select the points as
contour, if two of their neighbors are classified as
skin and two as wound. The resulting set of contour
points is coarsened by subsampling. To this end, we
use a coarse 163 voxel grid and select in each cell the
contour point closest to the voxel center. Furthermore,
we apply a statistical contour smoothing approach by
analyzing the discrete curvature of each contour point
ccci defined as curv(ccci) =

‖ccci+1−2·ccci+ccci−1‖
ccci+1−ccci−1

. Calculating
the mean µ and standard deviation σ of the curvature
values, we remove all contour points above one sigma,
i.e. with curv(ccci)> µ +σ .

Next, we apply least square fitting to extract two sur-
faces, i.e. a planar surface to the contour points and a
quadratic surface to the points classified as skin. The
latter resembles the healthy state of the wound region.
Both surfaces are utilized in the subsequent wound
measurement (see Sec. 3.4 and Fig. 2c).

Lastly, the wound’s point cloud is transferred into a tri-
angular mesh using Poisson surface reconstruction [27].
This is necessary in order to perform a volume measure-
ment of the wound (see Sec. 3.4).

3.4 Wound Measurement
Based on the reconstructed mesh, the segmentation of
the points into subsets S for skin, C for contour and
W for wound, and the fitted planar surface (w.r.t. the
contour points) and quadratic surface (w.r.t. the skin
points), we extract the wound’s length, area and vol-
ume.

The length of the wound is simply the maximum dis-
tance between contour points, i.e. max{‖x−y‖ | x,y ∈
C}. The area is computed by projecting the contour
points C onto the planar surface resulting in C ′. Cal-
culating the center of gravity g, the area is computed by
summing up the area of all triangles4(c1,c2,g) formed
by any two adjacent contour points c1,c2 and the center
of gravity [28].

In principle, the wound’s volume is enclosed by the re-
constructed surface mesh including the wound and con-
tour points, and the triangulated quadratic surface that
estimate the healthy skin. However, both geometries
do not perfectly intersect at the wound’s contour line.
Creating a single, closed mesh is a non-trivial task, as
direct mesh intersection and hole filling may not lead
to a proper solution, e.g. to spurious volume fractions,
in case of non-planar contours. Instead, we use the
reference plane generated from the contour points and
compute the wound’s volume based on the height fields
s(xxx),w(xxx) of the skin and the wound surfaces parame-
terized above the reference plane, respectively. Using
the triangulated wound surface, the volume is calcu-
lated as

∑
4∈W

cos(φ) · area(4) · (s(ccc4)−w(ccc4)),

where ccc4 is the center of the triangle in the parameter
plane and φ is the angle between the triangle normal
and the normal of the reference plane. We make sure to
consider only wound regions that lie within the wound’s
contour in the reference plane.

4 IMPLEMENTATION
The pipeline presented in Sec. 3 has been implemented
as prototype on a PC/laptop environment in order to
verify its proper operation. We use the COLMAP ap-
proach that incorporates the SfM optimizations pre-
sented by Schoenberger and Frahm [19] and their multi-
view-stereo approach [29]. To enable a fast and flexi-
ble development of the further pipeline stages, the pro-
gramming language python together with the scipy [30]
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Figure 3: Creating the wound phantom: The reference photograph of a large pressure ulcer (a), the 3D model
sculpted in blender (b), and the final painted clay model created using a 3D printed mold (c).

software package was selected. The pyntcloud 2 li-
brary as well as the pandas data structure [31] was used
for most point cloud processing operations. For effec-
tive and efficient code development, the entire pipeline,
with the exception of the Poisson surface reconstruc-
tion, has been integrated into a jupyter notebook3. For
color CIELAB-based segmentation we used the skim-
age library [32] that provides the function for color
transformation and dynamic thresholding.

5 RESULTS
5.1 Phantom Creation & Manual Wound

Measures
Unfortunately, there are no publicly available ground
truth data sets for chronic wounds. Therefore, we fab-
ricated wound phantoms based on an available photo-
graph of a pressure ulcer4 that was sculpted using the
3D modeling software blender5. A negative of the dig-
ital model was 3D-printed and used as a mold to cre-
ate physical models with modeling clay. The clay was
subsequently painted to roughly resemble the wound
photograph and glued to a bent cardboard. Based on
the first model resembling the photograph, two further
wound models were created, simulating healing and
shrinking of the wound area and volume. Thus, we fi-
nally have three wound phantoms Large, Medium, and
Small. For scale disambiguation, a marker was placed
in the scene (see Sec. 3.2).

We manually determine reference values for the wound
measures. The length measurements were taken with
a household tape measure at one millimeter precision.
The area was determined by placing a sheet of mil-
limeter paper on the wound, tracing the contour with
a pen and manually reading the area. Both approaches
for manually estimating the length and the area of the
wound are frequently used in clinical practice. The

2 github.com/daavoo/pyntcloud
3 jupyter.org
4 www.medetec.co.uk/slide%20scans/
pressure-ulcer-images-a/target92.html

5 www.blender.org

wound volume was determined by filling the phantom
with water using a 0.1ml precision syringe. All three
manual reference measurements have been conducted
by a student with background in medical informatics
w/o any practical experience in wound measurement.

5.2 Image Acquisition
In order to assess the quality of the reconstruction
pipeline, we acquired three image sequences using a
OnePlus 3 (A3003) smartphone with a Sony IMX298
16 megapixel CMOS sensor paired with a F/2.0
aperture lens and phase detection focus. For each
wound phantom, we acquired two sets of images
(@4640×3480 resolution) and one video sequence
(@1920×1080 resolution). The Img_Fast image
sequence was captured within 30s, while the Img_Acc
image sequence focuses on the precise image acquisi-
tion. The video sequence Video is approximately 30s
long, captured at some 5 frames per second. Tab. 1
states the precise number of images in column #im).

5.3 Evaluation
3D Reconstruction Quality

Since the precise geometry of the clay wound phantom
is unknown and no alternative (or gold standard) 3D
reconstruction method was available, we directly eval-
uated the quality of the 3D reconstruction by compar-
ing the clean point cloud produced by our SfM method
to the original 3D wound model created with blender.
Thus, the resulting error also incorporates imprecision
introduced by the 3D printing and the molding pro-
cess. The differences between the reconstructed point
clouds and the original 3D models were calculated with
CloudCompare6. Tab. 1 depicts the resulting geome-
try error in column geom.err. We find a very good
agreement of the reconstruction with respect to the dig-
ital wound model of a standard deviation below 1 mm.
Note, that the mean error is close to zero, as the recon-
structed point clouds and the original 3D models are
co-registered for comparison.

6 www.cloudcompare.org



Figure 4: 3D Reconstruction Quality. Color-coded geometric error of the reconstructed wound Medium for the
image sequence Img_Fast (left), Img_Acc (middle), and Video (right).

Wound/Sequ. #im #recon.points scale geom.err. [mm] segm.qual. [%] meas.comp. [%]
raw clean acc[%] mean std TPR TNR ACC l A V

Large/Img_Fast 13 232,213 208,149 86.5 0.06 0.58 99.6 82.4 94.9 6.3 -46.1 -45.6
Large/Img_Acc 50 768,990 581,003 98.0 0.04 0.61 99.8 89.8 96.7 -2.1 -10.9 -10.1
Large/Video 154 158,119 108,892 99.9 0.05 0.71 94.2 88.7 92.0 -1.4 -11.9 -14.3
Medium/Img_Fast 30 536,395 337,581 98.0 0.10 0.91 96.8 86.1 92.5 -1.1 -10.3 -9.8
Medium/Img_Acc 50 924,083 810,568 100.1 0.09 0.76 99.6 92.1 96.0 4.5 -12.9 -20.6
Medium/Video 150 250,629 207,327 93.4 0.10 0.93 95.5 89.8 92.5 3.8 -8.6 -16.4
Small/Img_Fast 50 401,751 322,663 93.1 0.04 0.44 99.0 91.3 95.6 11.4 - 3.6 2.2
Small/Img_Acc 50 986,796 486,801 99.3 0.15 0.80 99.4 90.5 95.4 4.4 -17.7 -20.2
Small/Video 143 286,819 224,004 97.3 0.12 0.12 93.5 93.6 93.6 3.3 -16.0 -18.0

Table 1: Qualitative results for all three wound phantoms and all three image sequences captured for each phantom.
The columns contain the number of images in the sequences (#im), the number of reconstructed points before and
after outlier removal and cropping (#recon.points), the accuracy of the geometric scale factor (scale acc), the
geometric error w.r.t. the digital wound model (geom.err.), the segmentation qualitative (segm.qual.), and the
wound measurement comparion w.r.t. the manually deduced wound measures (meas.comp.).

Furthermore, Fig. 4 shows the color-coded geometric
reconstruction error for geometric error of the recon-
structed wound Medium for all three image sequences.
As to be expected, our approach reconstructs more
points in case of the accurate image sequence. How-
ever, the video acquisition yields comparable results re-
garding the geometric error.

Ignoring the Large/Img_Fast experiment, which
will be discussed below, the scale factor has been
determined at least with 93% accuracy (see Tab. 1,
col. #scale acc). Furthermore, 50− 90% of the recon-
structed points have been finally segmented as part of
the skin or the wound, i.e. they have passed outlier
removal and the cropping of the marker (see Tab. 1,
col. #recon.points).

Segmentation Quality

Consulting the segmentation quality (column
segm.qual. in Tab. 1), we find that for all wound
phantoms and all image sequences our approach
achieves good to very good results. The true positive
rate (TPR) is 93.5 − 99.8%, the true negative rate
(TNR) is in the range of 82.4 − 93.6%, and the
accuracy is between 92% and 96.7%.

Wound Measurement Quality

Tab. 1, column meas.comp., depicts the wound mea-
surement comparison to the manually deduced wound

Figure 5: Segmentation result for the skin region of the
experiment Large/Img_Fast.

measures. First, we will discuss the results except for
Large/Img_Fast, for which we get significant larger er-
rors than for the other experiments. Compared to the
manual measurement, the wound’s length has been esti-
mated fairly accurate, only the Small/Img_Fast experi-
ment results in an error of 11%. In general, the length is
slightly over-estimated. Regarding the wound area, our
approach delivers clearly under-estimated values. At
first glance, this under-estimation seems to contradict
the over-estimation of the wound’s length. The manual
wound measurement approaches described in Sec. 5.1
are, however, fully independent, i.e. the manual mea-
surements for length and area do not necessarily corre-
late.



Regarding volume measurement, we first have to con-
sider the fact that our volume measurement approach
described in Sec. 3.4 uses a bent quadratic surface as
estimate for the healthy skin, while the manual refer-
ence approach to volume measurement based on the
wound phantoms rather refer to a planar wound cap
(see Sec. 5.1). Therefore, we additionally estimate the
wound’s volume with respect to the planar surface fitted
to the wound’s contour (see Sec. 3.4) for comparison
with the manually estimated volume. Still, the compar-
ison is not very expressive, since the manual approach
using water filling results in over-estimated volumes as
the water’s surface can easily exceed the wound con-
tour level due to the water’s surface tension. From this
perspective, it is not extremely surprising, that our ap-
proach “underestimates” the wound’s volume if com-
pared to the manual reference.

Comparing the wound measurement for the individual
phantoms in Tab. 1, column meas.comp., we realize
that the Img_Acc and the Video sequences deliver quite
comparable results.

Having a closer look at the Large/Img_Fast experi-
ment, we find that the number of images acquired (13)
is significantly lower compared to the other image se-
quences. While the scale accuracy, the geometry error
and the segmentation quality indicate a successful seg-
mentation, our approach could not retrieve the wound’s
contour properly. This is due to the fact, that the clus-
tering result for the skin region failed to identify a sin-
gle region, as the number of skin points is very low.
Subsequently, the final skin region does not enclose the
wound completely and, consequently, the contour has
not been extracted properly (see Sec. 3.3 and Fig. 5).
Still, if a sufficient number of images is acquired, the
Img_Fast method also produces reasonable results, as
has been demonstrated by the Img_Fast wound ac-
quisitions for the Medium and the Small phantom.
Note that the calculation of the segmentation quality in
Tab. 1, column meas.comp., for the Large/Img_Fast
experiment accounts for all skin points, not only the
main cluster. This, however, does not have any signif-
icant impact on the segmentation quality, as the eval-
uation assumes a binary classifier w/o a miscellaneous
class.

Public Science
We will make all digital data, i.e., the digital models of
the wound phantoms, the photographs, and the wound
measurement prototype publicly available via GitLab
upon publication.

5.4 Conclusion & Limitations
In this paper we present a novel method for 3D
measurement of chronic wounds that solely relies on
standard RGB imagery. The approach incorporates

structure-from-motion as 3D reconstruction, CIELAB-
based color segmentation of the wound and skin region,
wound contour reconstruction, and surface fitting to
emulate the healthy skin state. Compared to prior
techniques presented in literature, our approach has
minimal requirements regarding image acquisition,
i.e. standard cameras in mobile devices such as smart-
phones are sufficient. The quantitative and qualitative
evaluation of our approach using realistic wound
phantoms and different image acquisition modes yields
very robust results, if the number of images acquired
is large enough. Ignoring cases of insufficient image
counts, all three image acquisition types, i.e. Img_Fast,
Img_Acc, and Video, yield good segmentation results
and wound measures. A higher number of input images
and larger image resolution for the Img_Acc method,
however, requires more time to capture and increases
computational cost.
The main limitation of our approach is that although
we have used statistical approaches to determine thresh-
olds and other parameters wherever possible, there are
still some parameters that need to be adjusted manu-
ally. This mainly refers to clustering approach [24] and
wound segmentation. Furthermore, we so far have not
been able to apply our approach to real wounds.
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