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ABSTRACT

This contribution introduces a new methodology for the auto-
mated estimation of grayscale representations for hyperspec-
tral images (HSI) in the context of multimodal vibrational
microspectroscopic imagery. The purpose of the estimated
image is to enable a refinement in intensity-based registration
of already coarsely registered HSI. The proposed approach
derives and fuses gradient information that are globally dis-
tributed in the spectral domain using image data from con-
ventional brightfield microscopy (BFM) as a guidance and
anchor image for indirect refinement of HSI registration. It
is demonstrated that the global gradient image estimated by
solving two different optimization problems, reliably im-
proves device-based registration of HSI generated by Raman
microspectroscopy (RMS) and infrared microspectroscopy
(IRMS).

Index Terms— Hyperspectral Image, Registration Re-
finement, Multimodal Microspectroscopy, Correlative Mi-
croscopy

1. INTRODUCTION

The scientific term correlative microscopy generally com-
prises the usage of different microscopy techniques, com-
bined in a common imaging approach. In recent years, an
increasing trend in researching these multimodal imaging
techniques has been observable. Its consistent development
emphasizes the growing importance of multimodal concepts
for image-based analysis. Among others, vibrational mi-
crospectroscopy (VMS) has proven to be a promising can-
didate for successfully combining spectral information in a
multimodal imaging approach. Here, VMS unifies the com-
plementary concepts of RMS and IRMS.
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As imaging techniques, both methods enable material spe-
cific spectral information to be determined from re-emitted
radiation after a point-wise excitation of the sample. The set
of rastered individual measurements can be represented as
a HSI. As the demand for multimodal approaches in VMS
or comparable microscopic concepts increases so does the
need for partially or fully automated analysis procedures. For
image-based evaluation of multimodal approaches, auto-
mated and accurate registration of images from the different
modalities is essential. Related to HSI, the task of image reg-
istration might become even more challenging, in comparison
to other established imaging techniques, as the spatial infor-
mation is distributed over multiple channels in the spectral
domain. Thus, the generation of an image appropriate for
registration often needs expert knowledge to select spectral
bands that are representative of the components of the object
under investigation, as presented in Fig. 1. Additionally, the
different modalities often provide significant differences in
spatial resolution, as in IRMS and RMS.
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Fig. 1: Multimodal image data of two polymer samples pro-
viding three different components. BFM images (a) and (d),
univariate visualization of RMS data (b) and (e) as well as
IRMS data (c) and (f).



Consequently, spatial information provided by one modal-
ity might be missing in the other due to different diffraction
limitations of the imaging systems. For these reasons, a
cross-modal matching of interest points, as often used for
landmark-based image registration approaches, might be-
come impractical. Consequently, it is more reasonable to
prefer intensity-based approaches to ensure a successful au-
tomated registration of hyperspectral images in VMS. How-
ever, even intensity-based registration requires an appropriate
representation of the local sample structure, ideally as a
grayscale image.
The automated estimation of such a grayscale representation
from out of a hyperspectral image structure, has not yet been
extensively addressed in research related to VMS. Thus, the
purpose of this contribution is to introduce a corresponding
concept for estimating a global gradient image from HSI
data. Thereby, we benefit from a grayscale image from con-
ventional BFM, as used when parameterizing the individual
spectroscopic measurements, illustrated in Fig. 1. In a first
step, the BFM images serves as a guidance image to extract
spatial information from the spectral domain of the HSI. In a
second step, it serves as an anchor image for compensating
slight misregistration to the generated HSI, which occur after
measurements with device-based registration, as presented
in Fig. 2. Using the same anchor image for intensity-based
registration refinement in both considered modalities, should
lead to appropriate registered HSI. First results demonstrate
that the gradient image estimated by the proposed methodol-
ogy, reliably enables intensity-based registration refinement
for HSI data, showing different scales of misregistration.
To give detailed insights to the proposed concept, the remain-
der of this paper is organized as follows. In Section 2 a brief
statement concerning the given problem is presented and a
general approach for its solution is proposed. In Section 3,
comparable approaches for estimating global gradient images
from HSI, related to correlative microscopy, are presented
from the literature. A detailed description of the developed
methodology is given in Section 4.1. Experimental results of
the proposed solution and registration refinement evaluation
in Section 5, are followed by a discussion in Section 6 and a
conclusion in Section 7.

2. PROBLEM STATEMENT

A basic prerequisite for processing hyperspectral image data
in a multimodal approach of VMS is an appropriate accuracy
in registration. In turn, an image representation is required
that provides sufficient spatial features to enable a precise
registration. For this purpose, an automated methodology is
needed, extracting relevant features globally along the spec-
tral domain and fuses it into a single grayscale image. Due
to the different spatial resolution in RMS and IRMS and
the complementary spectral information of both modalities,
established feature extraction methods for landmark-based

registration, such as SIFT [1], SURF [2] or KAZE [3] fea-
tures, as investigated in [4, 5, 6] for HSI in the context of
remote sensing, might become challenging for cross-modal
matching in VMS. The approach introduced in this contri-
bution, is based on the assumption that the local structure of
a sample, required for intensity-based registration, is glob-
ally derivable from the gradient information of the individual
spectral channels.
We therefore make use of a BFM grayscale image, as it
is needed to parameterize the optical measurements setup
for HSI generation in VMS. The proposed methodology in-
tends to use gradient information from the BFM image as a
guidance for extracting gradient information globally from
the HSI. Therefore, a sufficient spatial correlation of the al-
ready coarsely registered images is assumed. The proposed
methodology is implemented in the context of a multireso-
lution analysis approach where in each decomposition level,
the following optimization problem is considered.

Let P ∈ IRn×m be a grayscale image of the object un-
der investigation and ∇P its corresponding gradient magni-
tude representation determined by the a Sobel operator. Let
HS ∈ IRn×m×λ be a hyperspectral image and ∇HSi the
gradient magnitude representation of its i-th channel in the
spectral domain determined by the Sobel operator. The pur-
pose of the introduced methodology is the data dependent
generation of a global gradient image ∇G derived from the
hyperspectral gradient representations ∇HSi ∀ i = 1, ..., λ
such that

|∇P−∇G| → min (1)

It is assumed that the gradient image estimated by equation
1, is appropriate for intensity-based registration of ∇P and
∇G. To enable registration refinement of the HSI across the
different spectroscopic modalities, ∇P serves as an anchor
image and thus, indirectly ensures precise registration of the
HSI from VMS.

(a) (b)

Fig. 2: Deviations in the registration accuracy achieved by
device-based registration. Global sample representation in (a)
and up-scaled region of interest (b) emphasizing the potential
for registration refinement of BFM and VMS image data.



3. IMAGE ESTIMATION FOR INTENSITY-BASED
REGISTRATION OF HSI

Over the last decade, multimodal approaches for correlative
microscopy have become increasingly important. Accord-
ingly, several solutions for estimating appropriate images are
proposed in the literature, intending to enable an intensity-
based registration of HSI. In [7], Kwak et al. combined IRMS
and BFM for the automated histological analysis of prostate
cancer in tissue samples. Here, images for intensity-based
registration purposes were estimated, extracting character-
istic parts of the tissue samples by binarization of the orig-
inal HSI. A comparable approach is presented by Chang
et al. in [8], where registration is conducted using a pre-
segmented HSI derived by k-means clustering. In [9], Gowen
et al. derive an appropriate image for registration of RMS and
IRMS data by a binarization of the first principal components
of HSI in each modality. In [10], Allouche et al. introduced
a template matching related approach for registration and
coupling image data from BFM, RMS and IRMS. The HSI
representation H̃S, used for registration purposes, was deter-
mined by the sum of pixel intensities over the λ channels of
the spectral domain

H̃S =

λ∑
i=1

HSi. (2)

In [11], Penaranda et al. used a statistical-based image
estimation for a refinement in a two-step registration ap-
proach. There, the image was the complement image of
HSstd, derived by the standard deviation of each spectral
pixel signature,

HSstd =

√
1

λ− 1

(
H̃S−HS

)2
, (3)

where HS contains the mean value for each spectral pixel
vector. In [12], Trukhan et al. lately made usage of the ex-
tended multiplicative signal correction model [13] to derive
an intensity-based image that is directly related to the optical
path length in a Beer-Lambert’s absorbance process. The es-
timated image was found to be highly representative for the
actual spatial structure of the sample.
To summarize, the methods presented in the literature are ei-
ther based on binarization resp. classification of the pixel vec-
tors or on basic arithmetical and statistical models. Physically
motivated models are rare. To the best of the authors knowl-
edge, taking into account an image from a further modality,
for guidance and anchor purposes, is a new methodological
approach in the context of correlative microscopy. The inte-
gration of additional and highly resolved spatial information
into the image generation process and into the registration
procedure, might lead to more tailored images and thus, to
more accurate results for intensity-based registration.

4. PROPOSED PROBLEM SOLUTION

4.1. Problem Formulation

The problem introduced in Section 2 is considered as a linear
optimization problem. With∇P and

∇G =

λ∑
i=1

xi∇HSi (4)

the purpose is to find the vector x ∈ IRλ that minimizes
the objective function in equation 1, in a non-negative least
square sense by

min
x≥0
‖∇P−∇G‖22. (5)

The optimization task is implemented in the context of a mul-
tiresolution analysis approach, which solves the optimization
problem on K different decomposition levels of a Gaussian
pyramid. The concluding reconstruction for the gradient im-
ages ∇X and ∇Y is estimated from the results of ∇Gk

resp. ∇Pk, upscaled to the initial image dimension using
bicubic interpolation, using the linear models

∇X =

K∑
k=1

αk∇Pk (6)

as well as

∇Y =

K∑
k=1

βk∇Gk. (7)

The corresponding weighting vectors α and β, restricted to

K∑
k=1

αk = 1 and
K∑
k=1

βk = 1, (8)

are either empirically selected based on the visual assessment
of ∇Gk resp. ∇Pk or automated by solving a further op-
timization problem. Therefore, the weighting vectors α and
β are estimated from the unfolded matrix representation of
∇Gk resp. Pk with ∇̃G ∈ IRNM×K and ∇̃P ∈ IRNM×K ,
where N and M denote the pixel dimension of ∇Gk and
∇Pk respectively, by solving

min
α,β ≥0

1

NM
‖∇̃PαT − ∇̃GβT ‖22. (9)

From equations 9, a general formulation of the multimodal
and intensity-based registration problem, considering a affine
transformation Φ and the mean squared error (MSE) as simi-
larity metric, is given by

min
Φ

1

NM
‖(∇X− Φ (∇Y)‖22 . (10)



4.2. Problem-based Optimization Implementation

The optimization problem introduced in equation 1 was
treated as a Non-Negative Partial Least Square problem,
solved by using the algorithms introduced by Lawson et
al. in [14]. To estimate the reconstruction weights α and β,
a problem-based minimizing setup was implemented, us-
ing the Optimization Toolbox provided by Matlab. Here,
equation 9 was defined as objective function. The weighting
vectors α and β, with 0 as lower and 1 as upper bounds,
were defined considering the constraints in equation 8. The
optimization problem was solved by applying Dual Simplex
algorithm. The estimation of the affine transformation Φ was
realized by using established registration algorithms of the
Image Processing Toolbox provided by Matlab.

5. EXPERIMENTAL RESULTS

5.1. Hyperspectral Image Data

To evaluate the presented methodology, image data of two
different polymer samples was used, with each sample con-
sisting of three different components with individual spectral
signature. RMS and IRMS images were acquired by apply-
ing a point-by-point mapping procedure of 4900 resp. 5625
measuring points. For RMS, a laser excitation wavelength
of 785 nm was used. Spectral information of the first poly-
mer sample covers a wavenumber range from 710 to 1790
cm−1. For the second polymer sample, a wavenumber range
from 150 to 1560 cm−1 was considered. For IRMS image
data, absorbance spectra of the wavenumber range from 600
to 3230 cm−1 have been collected for the first polymer sam-
ple and from 600 to 3300 cm−1 for the second sample, re-
spectively. All HSI have been preprocessed according to state-
of-the-art procedures, including outlier removal, normaliza-
tion, baseline correction and spectral smoothing. To create
a more explicit initial misregistration, HSI data of the poly-
mer sample presented in Fig. 1 (e) and (f), has been spa-
tially cropped. Thus, the applicability of the presented ap-
proach with respect to larger spatial deviations is investigated
as well. All images have been spatially scaled to a size of 350
× 415 pixel.

5.2. Results of Proposed Solution

The estimation of global gradient images introduced in Sec-
tion 4.1 was investigated using HSI data from BFM and VMS,
as presented in Section 5.1. By solving the optimization prob-
lems defined by equation 5 and 9 in a fully automated proce-
dure, ∇X and ∇Y have been generated according to equa-
tions 6 and 7. The results are presented in Fig. 3. The cor-
responding estimates of the weighting vectors α and β are
given in Table 1. In addition, the proposed methodology has
been investigated as a semi-automated approach. For this, the
weighting vectors α and β were chosen based on visual as-
sessment of the estimates for∇Gk and∇Pk.

Table 1: Estimates for weighting vectors α and β from equa-
tion 9. Letter indices denote considered modality IRMS (IR)
or RMS (R). Numeric indices corresponds to the polymer
sample used. Note that values smaller 1.0 e−3 are replaced
by 0.00 due to the negligible contribution.

K αIR1 βIR1 αR1 βR1 αIR2 βIR2 αR2 βR2

0 0.62 0.53 0.50 0.42 0.68 0.55 0.59 0.45
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.10 0.07 0.09 0.00 0.00 0.04 0.00 0.1
3 0.28 0.40 0.41 0.58 0.32 0.41 0.41 0.44

5.3. Registration Refinement Evaluation

According to the general concept of the introduced approach,
it is clear that verifying its effectiveness for registration refine-
ment requires a two-step evaluation procedure. In a first step,
an intensity-based registration was applied to the estimates of
anchor image ∇X and the global gradient image of the cor-
responding HSI ∇Y. In the case of a successful registration,
the achieved improvement in accuracy was determined after
applying the estimated affine transformation Φ to the origi-
nal HSI data. In a second step, the improvement in accuracy
of HSI registration refinement was evaluated. Therefore, a
comparison of the original and the transformed HSI data was
conducted. It has to be stated here that an intended compari-
son to the registration accuracy achieved by images computed
from equation 2 and 3 was not possible, as the corresponding
intensity-based registration refinement does not lead to satis-
fying results.

5.3.1. HSI and Anchor Image Registration

An interactive evaluation procedure was implemented to es-
timate the achieved registration accuracy. Thereby, interest
points that were visually recognizable in the edgde progres-
sions of both images, were marked manually in a superim-
posed visualization of the anchor image and an univariate vi-
sualization of original HSI data. The euclidean distance be-
tween the marked position served as metric for registration
accuracy. The procedure was conducted before and after ap-
plying the estimated affine transformation Φ from 9, to the
original HSI data. Three identified interest points were manu-
ally selected in N=10 evaluation run. The estimated averaged
euclidean distance for the selected points are presented in Ta-
ble 2 for HSI of the first polymer sample and in Table 3 for
HSI of the second polymer sample, respectively. Here, the
numerical indices denotes the interest point that was consid-
ered, while the letter indices b and a indicates distance estima-
tion before and after applying registration refinement. The in-
dices of the considered modalities IRMS and RMS illustrates,
whether the weighting vectors α and β have been determined
automatically (A) by solving equation 9 or have been chosen
manually (M) based on visual assessment of∇Pk.
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Fig. 3: Images derived from equation 6 and 7 for first polymer sample (a)-(d) and second polymer sample (e)-(h). ∇X
for IRMS registration (a), estimated gradient image ∇Y from IRMS data (b), ∇X for RMS registration (c), estimated
gradient image ∇Y from RMS data (d). ∇X for IRMS registration (e), estimated gradient image ∇Y from IRMS data
(f), ∇X for RMS registration (g), estimated gradient image∇Y from RMS data (h).

As the methodology intends a refinement in registration,
smaller distances indicate greater accuracy. For the HSI data
of both considered samples, a unique improvement in reg-
istration accuracy could be achieved by using the estimated
global gradient image in intensity-based registration. The
averaged distances in the last two columns confirm the vi-
sual assessment of registration result, as exemplary shown
in Fig. 4. The improvement is observed for fully and semi-
automated implementations.

5.3.2. HSI Registration Refinement

To evaluate the registration refinement with respect to the
HSI data from VMS, a similar interactive evaluation proce-
dure was conducted. Here, interest points were marked in
superimposed images of gradient information from the cor-
responding univariate visualizations of the HSI. Evaluation
was performed before and after applying the estimated affine
transformation Φ from 9 to the original HSI data. As in 5.3,
the euclidean distance serves as evaluation metric to verify
registration refinement. The estimated results are presented in
Table 4.

Table 2: Evaluation results of first polymer sample. Averaged
euclidean distance δ in pixel units, between interest points be-
fore (b) and after (a) registration was estimated. Numerical
indices refer to the corresponding point.

HS δ1b δ1a δ2b δ2a δ3b δ3a δb δa

IRMSA 13.3 4.4 19.3 11.2 15.6 10.6 16.0 8.7

RMSA 11.4 6.1 11.8 4.8 8.2 1.0 10.5 4.0

IRMSM 12.3 6.6 18.3 7.9 15.0 8.5 15.2 7.7

RMSM 11.9 6.2 12.0 1.5 8.0 0.7 10.6 2.8

Here, the numerical indices of the HSI corresponds to the
considered polymer sample. The evaluation results show that
the introduced methodology leads to clearly detectable refine-
ments in registration accuracy. This improvement could be
demonstrated for HSI of both modalities.

6. DISCUSSION

Based on a visual assessment of the estimated global gra-
dient images presented in Fig. 3 reveals that the proposed
methodology reliably extract prominent gradient informa-
tion distributed in the spectral domain of the considered
HSI. Solving the optimization problems defined in equation
5 and 9 leads to highly correlated images which can be con-
sidered as promising for intensity-based registration. These
observations are support by the numeric results presented
in Tables 2-4, which show a clear improvement in registra-
tion accuracy and correlate with the visual impression of
the registration refinement achieved, as exemplary shown in
Fig. 4. This contribution has demonstrated that the introduced
approach enables a refinement in registration for already fine
registered HSI, as well as for those providing major misreg-
istration to the anchor image.

Table 3: Evaluation results of second polymer sample. Av-
eraged euclidean distance δ in pixel units, between interest
points before (b) and after (a) registration was estimated. Nu-
merical indices refer to the corresponding point.

HS δ1b δ1a δ2b δ2a δ3b δ3a δb δa

IRMSA 47.9 12.0 25.0 1.3 46.9 9.4 39 7.6

RMSA 38.8 5.2 28.4 0.5 27.9 6.25 31.7 4.0

IRMSM 45.6 13.4 23.8 1.3 49.3 11.0 39.6 8.5

RMSM 37.2 7.4 25.7 0.7 29.5 4.6 30.8 4.2



Nevertheless, it is obvious that a minimum degree of local
correlation between the images of the considered modalities
must be given initially, for the introduced approach to be reli-
ably applicable. As the concept of global gradient estimation
leads to registration refinement for IRMS and RMS data, it
was found to be potentially independent concerning different
spatial resolutions of the image data. With respect to the es-
timates of weighting vectors α and β, it was observed that
the major gradient information for the reconstruction of ∇X
and ∇Y were extracted from the highest and lowest level of
the image decomposition, while the intermediate levels only
provide minor or negligible contribution. This effect was ob-
served for both spectroscopic modalities. Thus, the proposed
methodology combines highly resolved details of the original
image with the general gradient structure given by representa-
tions of lower resolution. Based on the visual assessment and
the numeric results that were achieved within the context of
this contribution, it can be concluded that the introduced con-
cept of global gradient estimation leads to gradient images
that are appropriate for refining the registration accuracy of
HSI. This approach can thus be considered as an promising
alternative to established state-of-the-art methodologies.

(a) (b)

(c) (d)

Fig. 4: Comparison of the initial registration accuracy be-
tween HSI and anchor image (a)-(b) and the registration re-
finement achieved by applying intensity-based registration to
HSI data (c)-(d). Visualization before registration (a) and up-
scaled region of interest. Visualization after registration re-
finement (c) and up-scaled region of interest (d). An improve-
ment in registration accuracy is observable.

Table 4: Evaluation results of first and second polymer sam-
ple. Averaged euclidean distance δ in pixel units, between
interest points before (b) and after (a) registration was es-
timated. Numerical indices of δ refer to the corresponding
point. Numerical indices of HSI refer to the considered sam-
ple.

HS δ1a δ1b δ2a δ2b δ3a δ3b δa δb

HSI1A 13.3 7.0 17.7 10.0 12.3 0.5 14.4 5.8

HSI1M 14.9 11.4 20.6 10.9 12.2 6.5 15.9 9.6

HSI2A 6.3 2.9 3.9 2.9 11.5 7.2 7.2 4.4

HSI2M 6.2 0.5 5.1 3.4 9.3 5.6 6.87 3.18

7. CONCLUSION

In this contribution, the concept of global gradient estima-
tion has been introduced as a new methodological approach
of computing gradient images from hyperspectral image data
for the purpose of registration refinement. It uses gradient in-
formation of an anchor image to estimate global gradient in-
formation that is distributed over the spectral domain of the
hyperspectral image. The methodology has been investigated
in the context of a multimodal imaging approach in vibra-
tional microspectroscopy . It could be demonstrated that the
proposed concept is leading to clearly observable improve-
ments in the registration accuracy of the considered image
data and outperforms comparable methods in terms of appli-
cability. Using the proposed methodology, gradient images
that are appropriated for intensity-based registration could be
estimated for different initial degrees of misregistration and
for the different spatial resolutions of the imaging modali-
ties. It can be concluded that the implemented approach re-
liably extract gradient information distributed along the spec-
tral domain of the hyperspectral image, leading to gradient
images that are promising for refinements in intensity-based
image registration.
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