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a b s t r a c t

Today’s time-of-flight (TOF) sensors measure full-range distance information by estimating
the elapsed time between emission and receiving of active light in real-time. Such sensors
are inexpensive, compact, and they have a high performance, which especially fits real-
time applications, e.g. in the fields of automotive, robotics, 3D imaging, and visualization.
The simulation of such sensors is an essential building block for hardware design and appli-
cation development. Therefore, the simulation data must capture the major sensor charac-
teristics.

This paper introduces a simulation approach, which is motivated by physics, for the Pho-
tonic Mixing Device (PMD) sensor which is a specific type of time-of-flight sensor. Dynamic
motion blurring and resolution artifacts such as flying pixels as well as the typical devia-
tion error are prominent effects of real world systems. Flying pixels arise when an area
of inhomogeneous depth is covered by a single PMD-pixel whereas the deviation error is
based on the anharmonic properties of the optical signal. The modeling of these artifacts
is essential for an authentic simulation approach. We present a detailed comparison
between a real PMD-device and the simulation data regarding the sensor characteristics.

The proposed algorithms are implemented in a hardware accelerated solution which
makes use of the programmability of modern Graphics Processing Units (GPUs). This
way, an interactive simulation feedback is provided for applications and further data pro-
cessing. The simulation takes place in real-time and thus all required control mechanisms
are accessible in real-time, too.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

There are several well-known image-based sensor techniques for measuring distances between objects and the sensor
location. Examples based on triangulation and/or image correspondences are laser triangulation, structured light and stereo
vision [1,2]. Time-of-flight (TOF) sensors, on the other hand, compute the distance to an object by estimating the elapsed
time between the emission of light from an active illumination and the arrival at the pixel of a sensor chip. Relatively
new camera-like approaches, like the Photonic Mixing Device (PMD) [3,4] and the Z-Cam [5], are still evolving.

A simulation of TOF-sensors is very helpful in numerous of use cases. On the one hand, the sensor parameters such as
resolution, focal-length and frequency can easily be modified and distortion effects can be evaluated in detail. On the other
hand, experiments can be carried out under reproducible conditions, especially with regard to dynamic scene setups. The
simulation approach should not be based on an ideal type of sensor, of course, the simulation results must rather reflect
the major sensor characteristics instead in order to produce results comparable to real sensor data. Thus, the sensor simu-
lation is influenced by the current research concerning the sensor model such as the PMD-device. The simulation data effects
the development of down-stream algorithms significantly, e.g. in the fields of object recognition and image analysis as well
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as correction of calibration errors. A real-time simulation is indispensable since the algorithms themselves handle the sensor
data also in real-time within the data processing pipeline. This means that the sensor simulation needs to be as fast as a real
world sensor.

The presented work is based on our Sensor Simulation Framework [6] which can handle TOF-sensors based on the PMD
technology in principle. The current paper focuses on a fully equipped PMD-sensor simulation including major temporal and
spatial artifacts, and the systematic deviation error. These effects are essential while simulating this kind of sensor (details
see in Section 3.2). The capability of real-time simulation is another main aspect-apart from the precision of the simulated
data-which is achieved by a parallelized simulation approach using the programmability of modern Graphics Processing
Units (GPUs). Thus, the data can be calculated highly parallel which allows for interactive simulation feedback and real-time
processing of down-stream algorithms.

The structure of this paper is as follows: in Section 2, an overview of the related work on PMD-sensor simulations is given,
followed by a review of the theoretical basis about the PMD technology in Section 3. Section 4 proposes the physical sensor
model which is the basis for the simulation approach. In Section 5, a realization of the theoretical sensor model is described.
The results of the sensor simulation are presented in Section 6 and their evaluation is discussed in Section 7. Finally, Section
8 concludes the presented sensor simulation approach.

2. Related work

Developers often apply their algorithms on both real sensor data and simulated sensor data. Peters et al. [7] use synthetic
test data for the localization of mobile robots. Their TOF-simulator application is MATLAB-based and not suitable for real-
time simulation. The approach which they favor has its origin in the measurement of the time-of-flight of the transmitted
signal, which results in the final distance to the object. In [8] they extend their application in order to model the bistatic
effects which are caused by the spatially separated illuminator and receiver positions in 3D cameras. All these sensor char-
acteristics are also covered by our approach. Furthermore, we use the rendering pipeline of the graphics card which auto-
matically provides the relevant scene geometry with respect to the current view instead of calculating it laboriously
manually. Apart from that, our simulation approach is suitable for real-time applications. Streckel et al. [9] use synthetic
ideal depth data to test their structure from motion algorithms in connection with TOF-sensors. Their simulation of depth
noise is based on results presented by Kuhnert and Stommel [10] who assume a quadric relation between the distance from
the sensor to the object and the standard deviation of the PMD-sensor’s depth data. The latter approaches neglect sensor
characteristics like flying pixels (see Fig. 12) and distance deviation (see Fig. 13). These artifacts are covered by the approach
we present in this paper.

3. Photo mixing device technology

3.1. Signal theory

The Photonic Mixing Device (PMD) camera illuminates the scene with modulated, incoherent near infrared (NIR) light
(see Fig. 1). Smart pixel sensors [3,4,11] gather the reflected light. The devices are of a low lateral resolution, e.g. current
models are available from 64� 48 up to 160� 120 pixels. One pixel samples and correlates the incoming optical signal with

Fig. 1. PMD-device and time-of-flight principle. In (a), a PMD camera (19 k model) with an additional high resolution color camera is shown. The principle
of the PMD technology is illustrated in (b).
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the internal reference signal of the modulated illumination which results in an image of a per-pixel sampling of the corre-
lation function with an additional internal phase delay. This image is called phase image throughout this paper. The PMD
takes four of these phase images to determine the distance related phase shift and thus the distance to the respective object
region can be calculated.

This process can be expressed by the following equations: given a reference signal gðtÞ and the optical signal sðtÞ incident
to a PMD-pixel, the pixel samples the correlation function cðsÞ for a given internal phase delay s:

cðsÞ ¼ s� g ¼ lim
T!1

1
T

Z T=2

�T=2
sðtÞ � gðt þ sÞ dt: ð1Þ

Assuming the reference signal to be sinusoidal, i.e. gðtÞ ¼ cosðxtÞ and no additional non-linear signal deformation, the opti-
cal response signal is given by sðtÞ ¼ bþ a cosðxt þuÞ, with x being the modulation frequency, a the amplitude, b the cor-
relation function’s bias, and u the phase shift relating to the object distance. It should be noted that the modulation
frequency defines the distance unambiguousness for the distance sensing, e.g. x ¼ 20 MHz results in an unambiguous dis-
tance range of about 7.5 m. Basic trigonometric calculations yield:

csðuÞ ¼ bþ a
2

cosðsþuÞ: ð2Þ

To be more precise, the demodulation of the correlation function is made by using several samples of csðuÞ which are ob-
tained by four sequential PMD phase images Ai ¼ csi

ðuÞ which use internal phase delays si ¼ i � p2 ; i 2 f0;1;2;3g.
The final distance d to the object’s surface (see Eq. 4), the intensity values b (see Eq. 5) as well as the amplitude a (see

Eq. 6) can be calculated based on the four phase images:

u ¼ arctan
A3 � A1

A0 � A2

� �
; ð3Þ

d ¼ clight

4px
u; ð4Þ

b ¼ A0 þ A1 þ A2 þ A3

4
; ð5Þ

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA3 � A1Þ2 þ ðA0 � A2Þ2

q
2

; ð6Þ

with clight � 3 � 108 m
s being the speed of light. For more detailed information about the technological background of the

PMD-sensor see Lange [4].

3.2. Real sensor behavior

The outcome of a real world PMD-sensor has a couple of artifacts coming along with the implementation of this kind of
technology. The distinctive features of the resulting data are still the topic of active research particularly in the area of sensor
calibration. This knowledge forms the basis of our simulation approach.

3.2.1. Flying pixels
First, a reconstructed depth image of a real PMD-device provides inaccurate distance information for pixels which cover

depth inhomogeneities, yielding so-called flying pixels. The typical artifacts where the object’s boundaries tend to drift either
towards the background or the camera sensor are illustrated in Fig. 2.

Fig. 2. Flying pixel artifacts. The pixels of the objects’ boundaries drift in the direction of the background. The image shows real sensor data.
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3.2.2. Wiggling
The wiggling error is the error which arises from the higher harmonics in the optical and the reference signal, i.e. the sig-

nal is not perfectly sinusoidal. This error is also known as the systematic deviation error (see Fig. 13). Fig. 3 shows the sensor
data which is measured by capturing a planar surface. However, the actual distance of the surface is marked by the position
of the reference plane. Rapp et al. [12] investigated the systematic errors and statistical uncertainties of the PMD-sensors.
The distance based errors of the PMD-sensors are also examined by Lindner et al. [13,14] who presented an approach of
the lateral and depth calibration of such sensors.

3.2.3. Motion blur
The sampling of the sinusoidal correlation function depends on phase delay and phase shift. This temporal integration

leads to a motion blurring effect in dynamic scene setups since the phase images Ai which are based on a sequential exposure
lead to varying object points observed by the respective pixels (see Fig. 4).

3.2.4. Noise
Since the cameras use active illumination (IR light) to measure the depth, they are sensible to errors from reflections in

their surroundings. Moreover, the electronic components of a camera react sensitively to a variation in temperature. In addi-
tion to the thermic noise the signal is also influenced by dark current noise and reset noise [15], for example. Thus, the noise
produced by a PMD-sensor is still subject of current research. In Fig. 3 the noise becomes visible in the cloud of points while
capturing a planer surface.

4. Physical sensor model

In this section a sensor model, which is motivated by physics, is presented which is the basis for the simulation approach.
The model must include the sensor characteristics described in the previous section in order to be comparable to real sensor
data.

4.1. Illumination and radiosity

Radiosity is defined as the density of the total emitted and reflected radiation leaving a surface. The radiosity B is calcu-
lated for a point P of a lambertian surface which is illuminated by an area light source L as follows:

Fig. 3. Systematic deviation error. The wiggling error is indicated by the reference plane which marks the actual distance from the surface. The image shows
real sensor data.

Fig. 4. Motion artifacts. The object is moving from the right to the left side. This results in motion artifacts which are especially visible at the boundary of
the object. The image shows real sensor data.
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BðPÞ ¼
Z

Q2L
f ð�x̂Q Þ

1

d2
P;Q

ðx̂Q � n̂PÞ � kP dQ ; ð7Þ

where we assume f to be the emission distribution function of L. Then BðPÞ is the outgoing intensity at point P (see Fig. 5). The
term dP;Q stands for the distance from P to a point Q of L. The brightness depends on the light’s angle of incidence which is
calculated by the dot product of the light direction x̂Q and the surface normal n̂P of P. kP is a constant which expresses the
surface’s diffuse reflectivity at P.

4.2. Point light illumination

The ideal demodulation of the correlation function c has been presented in Section 3.1 (see Eq. 1). The attenuation of the
signal in proportion to a point’s distance dP to the sensor is already included in the optical function s, with s / 1

d2
P
. Further-

more, s includes the radiosity in point P of the object’s surface which means s / BðPÞ. If it is assumed that s equals the ref-
erence function g with an additional phase shift uP , then this can be expressed by:

sðtÞ ¼ gðt þuPÞ �
BðPÞ
d2

P

: ð8Þ

In this first approach the illumination of the scene is restricted to a point light source. This simplification limits the light
source L in Eq. 7 so that it consists of one sample Q which means it is not integrated over the area of the light source. Fur-
thermore, if it is assumed that a PMD-pixel is affected by just a single point P of the surface, this results in the equation:

Ai ¼ lim
T!1

1
T

Z T=2

�T=2
gðt þuPÞ �

BðPÞ
d2

P

� gðt þ sÞdt: ð9Þ

A closer look at the physical setup of the TOF-sensors shows that a modification of Eq. 9 is still required. A single PMD-pixel
covers not only the distance to one point of an object’s surface, it rather represents the information which is covered by its
solid angle X which is illustrated in Fig. 6. Therefore, it is necessary to integrate over X:

Ai ¼ lim
T!1

1
T

Z T=2

�T=2

Z
x̂P2X

gðt þuPÞ �
BðPÞ
d2

P

dx̂P

" #
� gðt þ sÞ dt

¼
Z

x̂P2X

BðPÞ
d2

P

lim
T!1

1
T

Z T=2

�T=2
gðt þuPÞ � gðt þ sÞdt

" #
dx̂P : ð10Þ

Now �c is introduced as the normalized correlation function which is in contrast to c in Eq. 1 independent of the illumination
and the attenuation of the signal, then Eq. 10 can be written as

Fig. 5. The surface is illuminated by an area light source L. The brightness of the light which is emitted in P depends on x̂Q and n̂P . These vectors form the
light’s angle of incidence.

Fig. 6. A single PMD-pixel covers not just the distance to one point of the surface, it rather represents also depth inhomogeneities which are covered by its
solid angle.
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Ai ¼
Z

x̂P2X

BðPÞ
d2

P

� �csðuPÞ dx̂P ¼
Z

x̂P2X
f ð�x̂Q Þ

1

d2
P;Q

ðx̂Q � n̂PÞ � kP �
1

d2
P

� �csðuPÞ dx̂P: ð11Þ

If the position of the point light source is set exactly to the position of the sensor, which means that dP;Q ¼ dP , a discretization
of Eq. 11 yields:

Ai ¼
X
x̂P2X

f ð�x̂Q Þ
x̂Q � n̂P

d4
P

� kP � �csðuPÞ: ð12Þ

4.3. Area light illumination

The approach of a point light illumination which is described in Section 4.2 can be extended to an illumination with area
lights which represents the realistic light model of a real world device. If there is an area light source L, then all quantities
which are related to the light position have to be varied. Then Eq. 11 leads to:

Ai ¼
Z

x̂P2X

kP

d2
P

Z
Q2L

f ð�x̂Q Þ
1

d2
P;Q

ðx̂Q � n̂PÞ � �csðuP;Q ÞdQ

" #
dx̂P: ð13Þ

It should be noted that the phase shift u depends on the distance dP;Q from the point Q of the light source to the point of the
surface P as well as on the distance dP from the surface to the sensor, which means that uP;Q / kP � Qk þ dP . This formula is
discretized by:

Ai ¼
X
x̂P2X

kP

d2
P

X
Q2L

f ð�x̂Q Þ
1

d2
P;Q

ðx̂Q � n̂PÞ � �csðuPÞ: ð14Þ

5. Sensor simulation

In this section the theoretical sensor model of Section 4.2 is implemented which includes a point light illumination. The
goal is the simulation of the generation process of the four phase images Ai. These phase images also form the basis for fur-
ther data output of the PMD-sensor such as phase shift, depth, intensity and amplitude information.

5.1. Graphics hardware and simulation framework

We particularly aim at the generation of synthetic sensor data and the manipulation of camera parameters in real-time.
The high performance can be achieved by using programmable Graphics Processing Units (GPUs) of modern graphic cards
which automatically provide depth information of a synthetic scene. The GPU is programmed by implementing so-called
vertex and fragment programs. Thus, the image data is directly written to the GPU memory with the help of so-called frame-
buffer objects. This enables the advantages of modern graphics hardware which is fast, flexible and highly configurable
[16,17]. These parallel stream processors offer a way to outsource a considerable part of the sensor simulation to the graphics
card and thus a sensor-pixel can be processed very fast.

However, using standard graphics rasterization techniques means that there is a limitation to per-pixel data only which is
available at the GPU. Thus, the flying pixels effect of a real smart pixel sensor is elaborate to implement, because no infor-
mation about the surrounding pixels exists while processing a single pixel at the GPU. A super-sampling approach [6] based
on a higher resolution rendering of the scene to deal with this problem is described in Section 5.2.1. The complete sensor
model of Section 4.2 which is motivated by physics is implemented on the GPU. Therefore, the other characteristics of a real
world sensor, which are summarized in Section 3.2, are realized.

Thus, the usage of an adequate correlation function (see Section 5.2.2) automatically results in the wiggling error. The
motion blur effect is also taken into consideration by rendering the scene four times at different points of time according
to the four phase images. Our approach of the incorporation of noise is explained in Section 5.2.3.

The concept of the simulation of a PMD-sensor is embedded in a Sensor Simulation Framework [6] which imports 3D
scenes and provides tools for object and camera manipulation as well as animation. The framework (see Fig. 7) is hardware
accelerated to allow for interactive simulator feedback, making use of the programmability of GPUs. Thus, the presented sim-
ulation algorithms are integrated easily.

5.2. Algorithm

As standard graphics rasterization techniques of the graphics cards are used it is possible to take advantage of the depth
information about the scene which is automatically provided by the hardware. The depth data is only available within the
range of [0,1] and includes a projective depth deformation, i.e. non-linear.

972 M. Keller, A. Kolb / Simulation Modelling Practice and Theory 17 (2009) 967–978
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The ideal distance information dideal is then calculated by a perspective correction of the depth data. dideal also contains the
transformation from cartesian coordinates into radial coordinates in order to fit the TOF-approach where light source and
sensor are located in the same position.

First, the scene is rendered four times according to the phase delay si in order to generate the four phase images Ai. The
resulting distance dideal is then used for the calculation of the ideal phase shift:

uideal ¼
4px
clight

dideal: ð15Þ

Second, the phase images Ai are calculated by sampling the normalized correlation function �c and incorporating the object’s
IR reflectivity and its orientation as well as the intensity attenuation. Thus, the adaption of Eq. 12 results in

Ai ¼ f ð�x̂Q Þ
v̂ � n̂
d4

ideal

� k � �csi
ðuidealÞ; si ¼ i � p

2
; i 2 f0;1;2;3g; ð16Þ

with the intensity of the lambertian light source being f ð�x̂Q Þ ¼ 1. k is the object’s reflectivity constant, v̂ is the vector from
the object point towards the camera position and its illumination, and n̂ is the surface normal. v̂ and n̂ determine the bright-
ness of the camera’s illumination by the light’s angle of incidence which is calculated by the dot product of the two vectors
(see Eq. 7).

5.2.1. Spatial and temporal super-sampling
In Eq. 12, a PMD-pixel is influenced by the information which is covered by its solid angle X. Since only per-pixel data is

available at the GPU a spatial super-sampling algorithm is used which is applied to a higher resolution rendering of the
scene. Thus, a simulated pixel will also contain the information which relates to several directional samples within its solid
angle (see Fig. 6). In Fig. 8, a simple super-sampling algorithm is illustrated which simulates the cover by a pixel’s solid angle
and thus leads to a satisfactory simulation of a real world sensor’s flying pixel effects. The algorithm splits a pixel into several
sub-pixels, and a sample is taken for each of the sub-pixels. The resulting pixel’s phase value A for a certain phase image i is
then defined as the mean value of all m sub-pixels j:

Ai ¼
1
m

Xm�1

j¼0

Aj
i: ð17Þ

Fig. 7. The user interface of the simulation framework including manipulation and animation modules.

Fig. 8. The higher resolution image is sampled several times (here: four times). The value for the resulting pixel is based on the mean value. Thus, an
approximation of the flying pixel effect of a PMD-device is implemented.
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Note that in contrast to Peters et al. [8] the sampling of the normalized correlation function �c is applied to each sub-pixel (see
Eq. 16), whereas Peters first computes the phase uideal by superpositioning individual point responses and applies the cor-
relation function afterwards. Peters et al. [8] do not give results regarding the flying pixel effect.

The motion blurring effect of a real PMD-device is implemented by rendering the scene several times according to the
quantity of phase images Ai. Here the original scene is rendered four times one after the other at four different points of time.
This means that during an animation sequence the geometric setup of the scene, e.g. camera and object position as well as
orientation, will differ between the phase images. The left part of Fig. 9 shows the various images which are taken during a
camera movement. The four phase images Ai which are calculated on the basis of the rendered images are displayed in the
middle. Since phase images are used to calculate the resulting data such as the depth information, every single phase image
contributes to the simulation result (figure on the right). Thus, the implementation of the motion blur is achieved by tem-
poral super-sampling.

5.2.2. Correlation function
The actual function can not be measured exactly since the precise form of the correlation function c of a PMD-device is

influenced by numerous physical and electronic effects. Although a measurement of the signal response of a real PMD-pixel
can be achieved by directly illuminating it while applying all values of the internal phase delays si, the simulation result dif-
fers from the real sensor behavior, i.e. the systematic deviation error is not reproducible (see Section 3.2.2). The simulation
framework is flexible and highly configurable and thus offers a comfortable way of testing the influence of the correlation
function’s various implementations on the results. The values of the measured correlation function, which are displayed
in Fig. 10, are written to a texture which afterwards is available for a texture look-up at the GPU. Thus, the correlation func-
tion’s values are integrated into the calculation of the phase images Ai.

More realistic simulation results of the systematic deviation error are achieved by an approximation of the sinusoidal sig-
nal by various Fourier-modes which has also been examined in detail by Rapp et al. [12,11]:

cðsi;uidealÞ ¼
1
2
� ð1þ cosðuideal þ siÞ � 0:041 � cosð3 � ðuideal þ siÞÞÞ; ð18Þ

with si ¼ i � p2 ; i 2 f0;1;2;3g. This signal form results from a phenomenological approach, the plot of Eq. 18 is shown in
Fig. 10.

Fig. 9. Temporal super-sampling in a dynamic scene. The figure on the left shows the rendered images of a dynamic simulation scenario which contain
color and depth information. The computation of the phase images (middle) is based on the rendered images. The temporal super-sampling leads to
artifacts in the depth values (figure on the right) which are calculated on the basis of the simulated phase images.

Fig. 10. Correlation functions. The measured correlation function for all values of the phase shift u and the internal phase delay si is displayed in (a). The
correlation function of Eq. 18 is shown in (b).
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5.2.3. Noise approach
A correct depth noise model for PMD-sensors is still a topic of current calibration research. Thus, a simple noise model is

used in the sensor simulation which results in the plausible behavior of the simulated sensor. The idea is to include the noise
even on the level of phase images. To be more precise, a certain amount of randomly chosen noise values is added to the
values of the phase image Ai. Due to the fact that the noise is a per-pixel noise it is added to the resulting phase images after
super-sampling the higher resolution image. This means, Ai of Eq. 17 is modified in the following way:

Anoisy;i ¼ Ai þ a � nrand þ Ai � b � nrand; ð19Þ

with a; b P 0 being the noise coefficients, nrand 2 ½�1;1� is a random Gaussian number, and Anoisy;i is the resulting pixel’s
phase value A for a certain phase image i. The signal-to-noise ratio is described by a � nrand which results in a constant pixel
noise. The term Ai � b � nrand models intensity related noise effects. Since it is tricky to generate random numbers on graphics
hardware, a texture is sampled which contains random numbers. The influence of the noise is then controlled by adjusting a
and b. Noisy phase images then result in depth images which contain also noisy values.

6. Results

The simulation of the phase images of the PMD-device enables us to reconstruct also depth, intensity and amplitude data
by using known demodulation formulas (see Section 3.1).

Some of the results are shown in Fig. 11. A PMD-device with a resolution of 160� 120 pixels is simulated, the spatial
super-sampling is computed on a higher resolution rendering of the scene with 1920� 1440 pixels with down-sampling
of 40� 40 sub-pixels. The correlation function which is used in this scene setup is based on Fourier-modes (see Section
5.2.2) and the noise model uses a ¼ 0:000035 and b ¼ 0:01. The depth information is coded in color in Fig. 11a. The temporal
artifacts of the PMD-sensor are only visible during an animation sequence as shown in Fig. 11c. The flying pixels which be-
come particularly visible in Fig. 12 are caused by the spatial super-sampling of the scene. The side-by-side comparison of the
real data and the simulation data shows correspondence to a great extend regarding this sensor behavior. In the first sce-

Fig. 11. Simulation results. The simulated depth information of a PMD-sensor is displayed in (a). In (b), the image of (a) is shown in a 3D-world-coordinate
view. Its calculation is based on simulated phase images. The temporal artifacts of a PMD-sensor become visible during an animation sequence (see (c)).

M. Keller, A. Kolb / Simulation Modelling Practice and Theory 17 (2009) 967–978 975
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nario, the object is positioned in a short distance from the wall in order to demonstrate the flying pixels which tend to drift
from the object towards the wall. The distance between object and camera sensor is 1:67 m. The object itself is placed in
front of the wall at a distance of 0.36 m (see Figs. 12c and d). On the other hand, a great distance of 4.13 m between the object
and the wall results in flying pixels which are located in front of the object and drift in the direction of the camera sensor (see
Figs. 12e and f).

7. Data evaluation

The validation of the simulation data is quite elaborate. The wiggling errors of the sensor simulation and a real PMD-de-
vice are displayed in Fig. 13. This simulation uses the Fourier-mode correlation function which is described in Eq. 18, since
the correlation function which is based on a measured signal response (see Fig. 10a) results in slightly noisy data due to the
specific measuring technique. The graph is plotted as a function of the measured distance for the image depth information of
distances from 0:9 to 4:0 m. Fig. 13b shows this function measured by the sensor simulation. As the simulation results in
relative intensity values, the data is linearly transformed on the y-axis which depends on the internal camera design with
its latency time. However, the simulated data clearly indicate the typical deviation error of the real world sensor in Fig. 13a.

Although images of static scenes are relatively easy to verify, the validation of the data of an animation sequence is quite
difficult because of the spatial and temporal artifacts which occur at the same time. The comparison of real dynamic PMD-
sensor data with simulated data on a quantitative basis is very difficult. Therefore, we present only a qualitative comparison
in Fig. 14. This shows a moving box in front of a wall with a lateral velocity of approximately 2 m/s.

Fig. 12. Real PMD-data and simulation: comparison of flying pixel behavior. The first column shows the data of the real PMD-sensor while the second
column represents the simulation data. (a) and (b) illustrate the scene setup. The object’s width is 0:34 m and its height is 0:24 m. The flying pixels’ behavior
of the object with a short distance to the background is shown in (c) and (d). (e) and (f) display the effect of a great distance between object and background.
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In Section 5 the theoretical sensor model of Section 4.2 was implemented which supports a point light source at the cam-
era position.

The advantage of this approach is that the graphics hardware needs less computation time for the illumination of the
scene and thus the simulation feedback is achieved in real-time with interactive frame rates. With regard to the model of
the graphics card, the frame rates are between 15 and 30 frames per second. The approach of an scene illumination with
area lights (see Section 4.3) was implemented, too. According to Eq. 14, an area light illumination was simulated which is
approximated by up to 112 single lights which are located next to the sensor and are regularly distributed onto an area

Fig. 13. Deviation error. The graph (a) of a real PMD-device with a resolution of 160� 120 pixels is compared to the simulation data in (b). On the x-axis the
measured distances are shown and the deviation error is marked on the y-axis (both in meters). The simulation uses a spatial super-sampling on a higher
resolution rendering with 640� 480 pixels and with a down-sampling of 4� 4 sub-pixels. The noise model uses a ¼ 0:000164 and b ¼ 0:047.

Fig. 14. Comparison of a depth image of a dynamic scene. (a) Shows the depth image acquired by a real PMD-device during a horizontally movement from
the left to the right of the box which is shown in Fig. 12. The simulated data during the same object movement is displayed in (b). The typical temporal
artifacts on the left and the right end of the object are highly comparable to the real sensor data as well as the spatial artifacts.

Fig. 15. Difference between the image of area lights approach and point lights approach. The error values are calculated by subtracting the phase image A0

produced by the simplified point lights approach from the phase image A0 generated by the area lights approach. It should be noted that the black regions
differ less than 0:005% from the area lights approach and the white regions contain even smaller differences. This means that the resulting values are
almost zero and thus the two approaches produce nearly the same simulation results.
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of 19� 4:5 cm. This corresponds to the specification of a real PMD-device (19 k model). The distance from the camera and its
illumination to the center of the scene is 2 m. The difference of the two illumination models is marginally perceptible as
illustrated in Fig. 15. However, the frame rate of the area light illumination decreases to less than one frame per second be-
cause of the high computational costs.

8. Conclusion

We have presented a fully equipped simulation model of a Photo Mixing Device (PMD). The simulation is based on a phys-
ical model and resembles the sensor’s phase image generation. All relevant sensor effects like flying pixels, wiggling and mo-
tion blurring have been reproduced by applying this model in connection with the use of spatial and temporal super-
sampling techniques. Furthermore, a noise model is integrated into the sensor simulation. The proposed algorithms are
implemented in a hardware accelerated solution which uses the programmability of GPUs. This results in an interactive sim-
ulation feedback for the user who controls the simulation in real-time. The resulting data is comparable to real world sensor
data including the data of dynamic scenes which contain camera and object movements.

The simulation concept is based on current research results concerning time-of-flight sensors and the Photo Mixing De-
vice technology. The implementation of the sensor model, which is motivated by physics, can easily be adapted to latest re-
search and we are interested in new correlation functions as well as appropriate noise models.
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