
Evolution Analysis with Animated and 3D-Visualizations

Sven Wenzel, Jens Koch, Udo Kelter
Software Engineering Group

University of Siegen
{wenzel,–,kelter}@informatik.uni-siegen.de

Andreas Kolb
Computer Graphics & Multimedia Systems

University of Siegen
kolb@informatik.uni-siegen.de

Abstract

Large software systems typically exist in many revisions.
In order to analyze such systems, their evolution needs to be
analyzed, too. The main challenge in this context is to cope
with the large volume of data and to visualize the system and
its evolution as a whole. This paper presents an approach
for visualizing the evolution of large-scale systems which
uses three different, tightly integrated visualizations that are
3-dimensional and/or animated and which support different
analysis tasks. According to a first empirical study, all tasks
are supported well by at least one visualization.

1. Introduction

Many different questions arise when analyzing the evo-
lution of a software system. Some questions can be an-
swered exactly by computing appropriate metrics. Other
analysis goals are defined more vaguely. For instance, we
want to analyze the architectural quality of a software sys-
tems and look for components which are unstable in the
sense that they are changed over an over again. But what
kind of changes are we interested in? Which metrics should
be inspected? In these cases an exploratory approach is
needed. Especially, if the system is very large and very
complex, we first need an overview of the system which
shows us the big trends and anomalies which need to be
considered in greater detail.

Large tables of metric values will hardly provide us with
an overview. Visualization allows us to capture trends and
irregularities very fast, since our cognitive skills allow us to
quickly identify graphical patterns. Hence, we propose to
solve evolution analysis problems with visualization.

However, a single visualization cannot cover all aspects
of software evolution; the user would be overwhelmed with
information. It is better to have different visualizations for
different aspects and analysis goals. Each visualization can
focus on a particular subject and exploit the human visual
perception. Since different visualizations can confuse the

user if they are not consistent and well integrated, we aim at
different visualizations which can interact. E.g. if an entity
is selected in one visualization it should also be selected in
the other visualizations.

2. Related Work

Graphs have traditionally been used for direct visualiza-
tion of dependencies between software entities, other graph
types are used to visualize refinement hierarchies [6, 8]. In
general, purely graph-based systems do not scale properly
to large systems if information about the complete popula-
tion of system entities is sought. Additionally, graph-based
techniques are not able to integrate substantial information
about the evolution of a system.

Polymetric views can visualize several software met-
rics in parallel using standard visual attributes like position,
width, height, and color. Coarse-grained views aim at visu-
alizing a complete system. Fine-grained views show inter-
nal class structures. Evolutionary views display the changes
over time, i.e. the evolution matrix [4]. Because of the two
dimensions, only a very small number of entities and ver-
sions can be visualized. The concept of polymetric views
can also be used to visualize the amount of change between
revisions of models [13].

Code-line-based visualization considers software as a se-
quence of statements and maps the evolution of a code frag-
ment onto pixel lines forming a 2D diagram, e.g. the SeeSoft
metaphor [2]. In [15] the line-based technique is applied to
system entities instead of code lines and evolution spectro-
graphs are generated, which give a more global impression
of the evolution of a system. In [5] the metaphor is extended
to 3D to enlarge the number of visualized information.

Visualizations based on real-world metaphors, e.g. [1],
map software attributes to parameters of virtual objects in
cities or landscapes. All these metaphors cannot be ex-
tended to incorporate evolutionary aspects in a natural man-
ner. In [14] the city metaphor is extended by timelines, sim-
ilar to our evolution view. Colors are used to indicate the
aging of entities; other evolutionary aspects are not covered.

978-1-4244-4828-9/09/$25.00 2009 IEEE Proc. ICSM 2009, Edmonton, Canada

475

Figure 1. Different views: evolution view & spectrograph, structural changes, and animation view

3. The Visualization Concepts

We developed three integrated visualizations which pro-
vide different views on the analyzed system: the evolution
view, the animation view, and the structural changes view.

3.1. Evolution View

The evolution view shows all selected entities of the
evolving software system as a three-dimensional bar chart.
The concept is based on the idea of Lanza’s Evolution Ma-
trix [4], but extended into the third dimension. Each version
of an entity is represented by a column. The height of each
column represents the value of a metrics. Metrics can be
software metrics, difference metrics [11], or any other met-
ric. The columns are ordered along the x-axis according to
a sort criterion (e.g. the class name). The different versions
of the entities are arranged consecutively in the direction
of the z-axis. Corresponding entities, i.e. the same entity
in different versions, have the same position on the x-axis.
The evolution view may contain gaps, if entities are inserted
in later versions, deleted, or moved. The visualization al-
lows us to analyze different entities in detail. However, it
is often not clear in the first place, which entities should be
analyzed, especially when maintaining unknown systems.

A relief extension computes a surface on top of the
columns of the different entities and versions respectively.
It is colored according to the changes applied to the subse-
quent version. If the metric value increases from one ver-
sion to the next the surface is colored green (black). De-
crease is colored red (gray). Unchanged metric values lead
to gray (lined). The colored areas can quickly be identified
as entities and/or versions where many changes occurred.

While the relief extension enables us to quickly identify
changed entities or system versions, the spectrograph ex-
tension visualizes the distribution of metric values on two
walls along the x-axis and the z-axis. Our spectrographs re-
semble spectrographs in sound analysis, which display the
frequency content over time. Each spectrograph is a wall
consisting of a sequence of columns. A column represents
an entity on the x-axis wall and a system version on the z-
axis wall. All columns are divided into cells. Each cell is

associated with a range of a metric value, it is colored with
different tones of blue to indicate the number of entities be-
ing in that particular range of metric values. The darker
a cell is, the more entities have a metric value within that
range. A column of the x-axis wall shows the distribution
of metric values of an entity over time. Similarly, a column
of the z-axis wall shows the distribution of metric values in
the different entities within one version of the system.

The spectrograph can be used as a “query facility”: if
cells on one of the walls are selected, only entities having
metric values within the corresponding ranges are shown.

3.2. Animation View

The animation view uses animation to visualize changes
of metric values from on version to the next. The animation
can either be watched in form of a movie, or the user can
manually browse through the versions.

An entity in one specific version is drawn as an ellipse
in the two-dimensional space. The ellipses encode two dif-
ferent metrics by their size and their direction, and a third
metric by the distance to the center of the circle. Thus, up
to three metrics can be visualized.

If an entity changes its metrics from one version to the
next, the corresponding glyph changes its size, direction, or
location. Larger changes translate into faster movement.

Additionally, the user can select entities whose relation-
ships with other entities are to be drawn (e.g. associations
between classes). Simple lines connect the different glyphs.
The restriction to show only relationships of selected enti-
ties is necessary because the view would become too con-
fusing otherwise. Changes of relationships are also shown
in the animation.

3.3. Structural Changes View

A central aspect of evolution visualization of large soft-
ware systems are structural changes, i.e. changes which
modify the structural relationships between different enti-
ties, e.g. associations between classes. In order to visualize
these changes we show abstract, diagram-like representa-
tions of different versions of the software system. Each ver-

476

sion is represented by one diagram. A diagram is a set of
cubes (one for each entity) and lines that express relation-
ships between entities. The color and the size of a cube en-
code different metrics. We do not use standard graphical no-
tations as, e.g., defined in the UML, because they often con-
tain too many details which would obscure the evolution vi-
sualization. However, layout properties (e.g. positions from
a class diagram) can be used to arrange the cubes. Beside
import of layout data, we provide different standard lay-
outers such as string layout or circle layout, and the user can
arrange the cubes manually. Different diagrams are gener-
ated for the different versions of the system and arranged
behind each other along the z-axis in the three-dimensional
space. The x- and y-positions of the cubes is the same for
corresponding entities, i.e. all versions of an entity lay on
one line, and looking from the front we only see the newest
version.

In order to avoid visual overload, a blend factor can be
defined to make subsequent diagrams more transparent, so
that only the desired number of versions can be seen and
more distant versions become invisible. A navigation con-
troller enables users to browse through the history of ver-
sions and to select the version which displayed in the front.
The user can freely navigate within this 3D-visualization.

4. The Analysis Tool

Each visualization comes with advantages and draw-
backs. Hence, we designed an analysis tool in which we can
easily switch between different visualization concepts. The
tool has been realized as Eclipse plug-in and the visualiza-
tions have been realized with the OpenGL Bindings for Java
(JOGL). All visualizations are embedded in a main window
(perspective) as shown in Fig. 2. The screen is divided into
four regions. The (global) model tree view on the left hand
side shows a tree representation of all entities that exist at
any time within the evolution of the analyzed software sys-
tem. Each entry has a checkbox which, when ticked, selects
these entities for visualization. The information view on
the right hand side provides information about the currently
selected entity: its name and identifier, context information
if existent, and analysis information such as metric values.
The settings view enables us to configure the current visu-
alization, e.g. to select metrics to be displayed, scale factors,
or layouts. The main view contains the visualizations of the
software evolution either in different tabs, or side by side,
when looking for relations between different visualized as-
pects.

All views and especially the different visualizations are
tightly integrated. Whenever entities are selected during
analysis, the selection is applied to all views and visualiza-
tions.

Figure 2. The analysis tool.

5. Evaluation

Based on the tool implementation, we evaluated our vi-
sualization concept in a first empirical case study. The study
involved 15 test persons, which have mainly been under-
graduate students. Each test person had to analyze the evo-
lution of two software systems; one project which was un-
known to the test persons and one project which had been
developed by themselves. The projects ranged from 30 to
100 classes with up to 20000 lines of code. On average, 19
versions have been analyzed in the different projects. The
testers had to analyze the projects regarding different as-
pects, such as stable code, error-prone code, or dead-code.
With a questionnaire we asked for a rating from 1 (bad) to
5 (excellent) points for each visualization concept. After-
wards, we asked for an assessment of the quality of each
visualization concept (e.g. scalability, navigation, etc.), and
questions regarding the tool (e.g. model tree view, displayed
information, etc.).

The study provided very good results; on average, each
visualization concept had a rating of more than 3 points for
the different analysis problems, i.e. the test persons gave
mainly positive answers.

For the unknown project, the evolution view offered the
best solution for the location of stable code. Here, the av-
erage rating almost reached the maximum. The animation
view got a good rating, too, with more than 4 points in aver-
age. The structural changes view was rated with 2.6 points,
which was the worst rating of all. The search for error-prone
code and entities with a short life time was supported by all
our visualization concepts similarly. The location of dead
code was best supported by the structural changes view.

For the known project, the study delivered similar
promising results. Here, the testers had to solve tasks such
as locating the entities with most changes (task A), finding
the versions with most changes (task B), and finding the ver-
sions with most structural changes (task C). On average, the

477

evolution view (3.97 points) and the animation view (3.94)
got the best ratings, however, all visualization concepts pro-
vided good results. Tasks A and B were supported equally
well by the evolution view (4.09 points). The spectrograph
extension provided a good support here. However, for task
A, the animation view still performed better (4.46 points)
because the high number of changes in the test data was
well reflected in the continuous change during the anima-
tion. The overview about the changes of versions (task B),
however, is not obvious in this view. The structural changes
view did not sufficiently support task A; it got a rating of
2.64 points only. Surprisingly, the version with the most
structural changes was not located at best with the structural
changes view either. It was only rated as good as the evolu-
tion view. This weakness of the structural changes view is
due to the problem that we cannot display all versions at a
time; if we did so, the visualization became unclear.

The test persons were also asked about general proper-
ties of the different visualizations. The testers have been
asked again to give up to 5 points in different categories.
None of the concepts got a rating lower than 3 in any cate-
gory. The evolution view got the best results for scalability,
support of complex systems, and support of evolution anal-
ysis. The animation view got the best results for navigation
and interaction. The structural changes view got the worst
rating in all categories.

The users also assessed the extensions of the evolution
view. 33% of the test persons saw a benefit in the spectro-
graph, the relief extension was rated positively by 40% of
the testers. In general, the evolution view was rated best due
to its intuitive behavior.

We were initially afraid that the encoding of three differ-
ent metrics in the animation view might overload the user.
Thus we asked the test persons about their impression: only
three persons felt to have been overloaded. Only two test
persons had a problem to recognize changes in metric val-
ues within the animation view. Some test persons requested
an option to switch off the interpolation between metric val-
ues of different system versions.

The structural changes view was often assessed to be
very confusing. The layout generated by the predefined lay-
outers, which have their origin in graph visualization, was
not preferred; it got a rating of only 2.8. The manual ar-
rangement of cubes, however, was often used and got a bet-
ter rating of 3.5.

The overall usage of the tool was rated with 3 points. The
feature that the selection of entities is synchronized between
the model tree view and all visualizations was in average
rated with 4 points. Many test persons, however, missed a
function to directly switch from the visualization into the
source code.

6. Outlook

In this paper we presented an approach for visual evo-
lution analysis, which integrates three novel visualization
concepts. The approach has been implemented in an
Eclipse-based tool, which was evaluated to be very conve-
nient in a first empirical case study. Further material such
as videos showing the tool in action can be found at [16].

Currently, we run another case study with different
open-source projects to evaluate the applicability to larger
projects. We further work on the integration with more ad-
vanced features such as difference analysis [10] and auto-
mated trace recovery [12].

References

[1] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Soft-
ware landscapes: Visualizing the structure of large software
systems. In Proc. Symp. on Visualization (VisSym), 2004.

[2] S. Eick, J. Steffen, and E. Sumner. Seesoft - a tool for visu-
alizing line oriented software statistics. IEEE Trans. Softw.
Eng., 18(11):957–968, 1992.

[3] C. Knight and M. Munro. Comprehension with[in] virtual
environment visualisations. In Proc. IWPC, pp. 4–11, 1999.

[4] M. Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. In Proc. IW-
PSE, 2001.

[5] A. Marcus, L. Feng, and J. Maletic. 3D representations for
software visualization. In Proc. ACM Symp. on Software
Visualization (SoftVis), pp. 27–ff, 2003.

[6] H. Muller and K. Klashinsky. Rigi: a system for
programming-in-the-large. Proc. ICSE, pp. 80–86, 1988.

[7] T. Panas, R. Berrigan, and J. Grundy. A 3d metaphor for
software production visualization. In Proc. Intl. Conf. on
Information Visualization (IV), pp. 314–320, 2003.

[8] M. Storey and H. A. Muller. Manipulating and documenting
software structures using SHriMP views. In Proc. ICSM, p.
275, 1995.

[9] A. Telea, A. Maccari, and C. Riva. An open toolkit for pro-
totyping reverse engineering visualizations. In Proc. Symp.
on Data Visualisation (VisSym), pp. 241–248, 2002.

[10] C. Treude, S. Berlik, S. Wenzel, and U. Kelter. Difference
computation of large models. In Proc. ESEC/FSE, pp. 295–
304, 2007.

[11] S. Wenzel. Scalable visualization of model differences. In
Proc. of the International Workshop on Comparison and
Versioning of Software Models (CVSM’08), May 2008.

[12] S. Wenzel, H. Hutter, and U. Kelter. Tracing model ele-
ments. In Proc. ICSM, pp. 104–113 , 2007.

[13] S. Wenzel and U. Kelter. Analyzing model evolution. In
Proc. ICSE, pp. 831–834, 2008.

[14] R. Wettel and M. Lanza. Visual exploration of large-scale
system evolution. In Proc. WCRE, pp. 219–228, 2008.

[15] J. Wu, R. Holt, and A. Hassan. Exploring software evolution
using spectrographs. In Proc. WCRE, pp. 80–89, 2004.

[16] Project homepage. http://pi.informatik.uni-siegen.de

/projects/evolver, 2009.

478

