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Abstract: In this paper a tracking approach designed to utilize multiple cameras with optional depth information, e.g.,

ToF cameras, structured light cameras and stereo or multi camera setups, is discussed which combines pho-

tometric tracking with volumetric tracking. It is able to work with any number and type of cameras. In order

to achieve this objective the tracked object is modeled in 3D with an ellipsoid. To make use of the depth

information the density of the observed space is modeled with a set of Gaussian kernels for each line of sight.

A proposed target configuration is then evaluated by projecting each observed color image onto the ellipsoid

and comparing this projection to the expected appearance. Additionally, the density of the space occupied by

the ellipsoid is estimated and compared to the expected density. It is demonstrated that by utilizing the depth

information in this way ambiguities due to color similarities can be overcome reliably.

1 INTRODUCTION

Tracking is one of the most important and widely

spread video processing steps which has been used

since the early days of digital video processing in

the fields of motion capture, activity recognition and

analysis. Applications range from security and safety

systems, assisted living up to gesture recognition and

other interaction methods.

The tracking algorithms of choice are the Kalman

filter and the later particle filter or CONDENSA-

TION algorithm (Isard and Blake, 1998) which form

a widely accepted standard and define mechanisms to

locate a given target based on the current observa-

tions, i.e., assigning probabilities to proposed target

states. Tracking approaches differ in addition to these

mechanisms in the way how they describe the target,

how they measure the probability of a certain object

state, how they adapt the target model over time and

so on. These definitions must be adapted to the mea-

surement system, i.e., one or multiple color cameras,

Time-Of-Flight cameras, radar and so on.

In this the paper a multi-view and multi-modal track-

ing approach which is able to utilize any number of

color as well as 3D cameras is presented. Particle

filters are used as the framework and photometric as

well as volumetric measures are utilized to assign a

probability to a certain object state. A state is modeled

with an ellipsoid in 3D space which can be generated

from a set of 3D points with the help of the Maximum

Likelihood estimator. The density of the space on the

other hand is modeled by a set of Gaussian kernels

for each pixel or line of sight more precisely. The dif-

ference between the expected intersection density and

the actual density is used as the volumetric measure.

The photometric measure compares the expected ap-

pearance and the observed appearance, which is cal-

culated by projecting the input images onto the ellip-

soid.

The photometric measure is evaluated for every color

camera whereas the volumetric measure is calculated

for each ToF camera in the setup. All models and

measures will be described in detail and some experi-

ments will be discussed to confirm the capabilities of

the approach presented in this work.

This paper is structured as follows: In section 2 the

related work is discussed. Afterwards, the approach

of this work is presented in section 3. Some experi-

ments are discussed in section 4 and the paper ends

with a conclusion and an outlook in section 5.



2 RELATED WORK

Ghobadi et al. used the CONDENSATION algorithm

in (Ghobadi et al., 2008) to track a robot arm and

personnel in an industry environment by clustering

of depth values gained from a 2D/3D camera and in

(Ghobadi, 2010) this approach is compared to other

techniques.

In (Kahlmann et al., 2007) depth histograms of

persons are tracked also by usage of the CON-

DENSATION algorithm, whereas in (Bleiweiss

and Werman, 2009) objects are tracked based on

color and depth histograms using Mean-Shift. A

method based on separate color and depth histograms

working with the CONDENSATION algorithm was

presented in (Sabeti et al., 2008). An different

approach that involves tracking was presented in

(Grest et al., 2007). Here the pose of an human

arm was estimated based on a combination of the

silhouette and the 3D position of the arm.

In (Gokturk and Tomasi, 2004) depth measurements

from a ToF camera are clustered by k-means and

these clusters are compared to a training set of

clusters representing head and shoulders. The actual

tracking consists of correlation matching which is

also used in (Bevilacqua et al., 2006) but here with

blobs instead of with clusters. In (Witzner et al.,

2008) depth and intensity images from a ToF camera

are used to firstly construct a background model.

Then the 3D points not belonging to the background

are projected on the ground plane and clustered.

These clusters are what is actually being tracked.

A multi-view tracking approach was presented by

Khan and Shah in (Khan and Shah, 2006). They

deal with occlusions and ambiguities by combining

the information from different cameras and prevent

intersections of objects or people in this case through

a global homography constraint. Additionally, in

(Bernardin et al., 2006) a multi-view method based

on blob-tracking was demonstrated in a smart room

environment. The targets were characterized by color

histograms and Haar-like features.

The approaches presented in (Kahlmann et al., 2007)

and (Bleiweiss and Werman, 2009) are the closest

ones to the method introduced in this paper. The

main difference is that these approaches treat the

distance measurement of a pixel like an additional

color channel, whereas in this work the object and

the space are explicitly modeled in 3D. Thereby, it

is possible to combine multiple cameras of different

types globally, i.e., one probability density function

describing possible object states is estimated and not

several which have to be fused later on.
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Figure 1: Schematic overview of the approach proposed in
this work.

3 Tracking Approach

The tracking method described in this paper is based

on the particle filter. It is a technique to estimate a

non-Gaussian distribution over a state space. A state

X defines a configuration of the tracked object, e.g.,

the position, size and orientation, and the probability

distribution density pX (ξ) describes the probability of

the realization ξ being the true configuration. This

distribution is approximated with a set of weighted

samples {si,ωi} for i = 1, . . . ,n. The weight of a sam-

ple is thereby determined by measuring how good a

certain configuration s· explains the current observa-

tion. This procedure is called the CONDENSATION

algorithm for which an exact description can be found

in (Isard and Blake, 1998).

In figure 1 an overview of our approach working with

n color and m ToF cameras is illustrated. The like-

lihood (weight) of a certain configuration s· is calcu-

lated by projecting each color image onto the 3D ob-

ject model (here an ellipsoid) and by comparing it to

the appearance model of the tracking target. The ap-

pearance model consists of a photometric model (his-

togram of the projected image) and a density. In order

to determine this density firstly the depth information,

gained from the ToF cameras, is used to build up a

space model, which consists of a set of Gaussian ker-

nels for each line of sight. The intersection density of

an object configuration and the 3D space can then be

calculated and compared to the expected density.

In the rest of this section firstly, the object and space

models are defined. This section ends with an expla-

nation of the appearance models and the measuring

process.

3.1 Object Model

As already mentioned, the tracked object is modeled

with an ellipsoid. The reason for this is that a Gaus-



sian distribution N (µ,Σ) with µ ∈ R
3, Σ ∈ R

3×3 can

be created from set of 3D points simply by using the

Maximum-Likelihood estimator and when defining a

fixed standard deviation or Mahalanobis distance d,

this Gaussian describes an ellipsoid.

In the following a distance measure between two sam-

ples or states will be explained. The distance between

two states described by N (µ1,Σ1) with a volume of

V1 and N (µ2,Σ2) with a volume of V2 is measured

through the Euclidean distance between their centers,

their relative difference in volume and with an inter-

section volume estimate I(N (µ1,Σ1),N (µ2,Σ2)) as

a fraction of max{V1,V2}. The intersection volume

is estimated by randomly generating N points on the

hull of the smaller ellipsoid and checking how many

are inside of the larger ellipsoid and, of course, this

measure has to be truncated. The similarity measure

is then given by

ϕ((µ1,V1),(µ2,V2)) = exp

(

−
‖µ1 −µ2‖

2

2σspace

)

(1)

· exp

(

−
1

2σsize

log

(

min{V1,V2}

max{V1,V2}

)2
)

· exp

(

−
1

2σis

log

(

I(N (µ1,Σ1),N (µ2,Σ2))

max{V1,V2}

)2
)

with tuning constants σspace, σsize and σis.

For simplicity the so-called stochastic diffusion,

which is used to generate new samples, is only out-

lined. The two distributions describing the differences

in volume and space are randomly sampled and the

ellipsoid is moved and resized accordingly. After-

wards, the ellipsoid is rotated by sampling randomly a

Gaussian distribution depending on another constant

σangle.

3.2 Modeling the Density of 3D Space

In this work the density of space is modeled in 3D

with the help of depth information. Currently, ToF

cameras are used for this purpose which makes it pos-

sible to model the observed density for each line of

sight. Each of them is assigning a given 3D point a

certain probability that it contains mass. This proba-

bility is estimated based on the information if a point

in space is reflecting light. Then it can be assumed

that an object is located there, see figure 2 for plots of

the space model for a real video sequence. The space

model describes the density of each line of sight with

a set of Gaussian kernels. The idea is to represent

current and previous observations simultaneously in

order to represent the foreground and background ac-

curately.

The variances of the Gaussians provide the means to

handle different noise levels, e.g., areas where the

depth measurements are extremely noisy the variance

will be high and thereby the density of such a line of

sight will be assumed to be also high. This will reduce

the influence of the volumetric measure since differ-

ent depth values can not chance the density difference

significantly then. For the space behind the deepest

Gaussian, i.e., the one the the highest depth value, a

minimum density probability of γunknown is assumed.

The probability of mass existing at depth d for a cer-

tain line of sight is estimated by

pxy(d) =max
i

{V (d −µi)} (2)

V (d̃) =















exp
{

− d̃2

2σ2
i

}

d̃ < 0

0 0 ≤ d̃ ≤ βwidth

exp
{

− (d̃−βwidth)
2

2σ2
i

}

else

(3)

with βwidth being the assumed depth of objects, since

only their fronts are observable.

The usual online clustering approach

is used to construct the set of kernels

{{µ1,σ1,ω1}, . . . ,{µn,σn,ωn}} characterized by

their means µ·, variances σ· and weights ω·. This

procedure is often applied, e.g., for background

subtraction, cf. (Stauffer and Grimson, 1999). We

consider the background kernels and the kernel

belonging to the last observation as being valid. The

reason for this is that not only the background or the

most often used Gaussian kernels should describe

the density of space in the line of sight but also the

current observation.

3.3 Measuring and Appearance Models

The tracker generates and maintains appearance

models which describe the observations which are

searched for in consecutive frames. In this work

color histograms are used to describe the observations

gained from the color cameras (one per camera) and

a density model to represent all 3D observations. The

weighting measure for a certain configuration (sam-

ple) of the object is given by multiplication of the his-

togram measures and of the volumetric measures. Ad-

ditionally, a measure based on the distance between

the previous or predicted target state and the proposed

object configuration can be integrated to smooth the

trajectory of the discovered target path and to prevent

long jumps or large size changes. This pays respect to

the fact that high velocities of the tracked objects are

unlikely.



(a) Input image (b) Input depth image

(c) 3D rendering (d) Space model (side view)

Figure 2: 3D space model built from a recorded video using
a single MultiCam.

3.3.1 Appearance Model

In order to determine how good an actual configura-

tion of the object explains the observations each color

image is projected on the object and for every image

a histogram is build up from the part of the image

which hits the object (to do this efficiently a scanline

algorithm or a bounding box of the ellipsoid can be

applied). The formulas for this ray casting approach

are straightforward and are therefore omitted here.

The comparison of the histogram ht of the target and

the generated one hg for a proposed target state is

done by calculating the sum of squared differences

(SSD) of all bins and a similarity measure δ(ht ,hg) is

given by

δ(ht ,hg) = exp

(

−
1

2σhist

SSD(ht ,hg)

)

(4)

with σhist being a smoothing constant. Other possibil-

ities to measure the difference between the histograms

are the histogram intersection or the Bhattacharyya

coefficient. The adaptation over time of the appear-

ance of the target can be achieved with a convex com-

bination of the histograms.

These measure is evaluated separately for every im-

age or camera respectively.

3.3.2 Density Model

The density model simply consists of a value de-

scribing the observed density of the object model

or ellipsoid. The intersection density of the object

(a) Input image (b) Initialization (c) Distance

(d) Photometric (e) Volumetric (f) Combined

Figure 3: Example scene with per hand initialization of the
body of the person and plots of the different measures for
different object centers.

model and the space model is estimated for every ToF

camera by a discrete integration along each line of

sight which intersects the object. For simplicity let

{{µ1,σ1,ω1}, . . . ,{µm,σm,ωm}} be the set of all valid

Gaussian kernels for the pixel (x,y). Let further the

line of sight through pixel (x,y) have the intersection

points X1 = (x1,y1,z1) and X2 = (x2,y2,z2) with the

ellipsoid of the object with a distance d = ‖X1 −X2‖.

Then the density Φxy along the line of sight through

pixel (x,y) using an integration step ε is estimated by

Φxy =
1

1+ d
ε

∑
t=0,ε,2ε,...,d

pxy

(∥

∥

∥

∥

X1 + t
(X2 −X1)

d
−Cxy

∥

∥

∥

∥

)

(5)

with pxy(·), see eq. 7, being the probability of mass

existing at a given point and Cxy being the position

of the camera. The density of the whole ellipsoid is

computed by averaging over all densities Φxy of all

pixels (x,y) which have intersection points.

A similarity measure δv between the density Φt of the

target and the density Φc of the current configuration

of the object is given by

δvol(Φt ,Φc) = exp

(

−
1

2σvol

log

(

min{Φt ,Φc}

max{Φt ,Φc}

)2
)

(6)

with another smoothing constant σvol . Again the

adaptation is performed by a convex combination of

the densities.

4 Experiments

The experiments were performed using monocular

2D/3D cameras (Ghobadi et al., 2008) and their fo-

cus lies in person tracking especially head tracking.



Only photometric measure used.

Photometric and volumetric measures used.

Figure 4: Experimental results for a head tracking. The
head is lost when only the photometric measure is used, but
with the additional volumetric measure the target is kept.

Figure 3 shows in the first row the color image and an

illustration of the 3D space model in which the body

of the person was marked per hand. This ellipsoid

was moved in the next frame and the photometric,

the volumetric, the distance as well as all measures

combined were evaluated. The results show only a

selected region of the space. For this illustration an

orthogonal projection is used and therefore the pho-

tometric measure does not change for different depth

values. In the plot of the combined measures the cen-

ter of the body is located with high accuracy.

In figure 4 a few frames of a head tracking experi-

ment using a single 2D/3D camera are shown. Here

the initialization was done using a standard face de-

tection method with a subsequent clustering of the 3D

points of the head to remove the background. In the

first row only the photometric measure was used to

weight the particles. Since the head has a color sim-

ilar to the frame of the LCD TV the head can easily

be lost as shown. For a plot of the photometric mea-

sure see figure 5, where the measure was evaluated

for different centers of the head. Here a position on

the TV frame has an equally large likelihood than the

true head position. In the second row of figure 4 both

measures were used and thereby losing the head can

be prevented reliably. A plot showing the resulting

trajectories is shown in figure 5.

The setup of an experiment utilizing two 2D/3D

cameras is illustrated in figure 6. Here the cameras

were calibrated and registered using a standard semi-

automatic feature based approach. An 3D rendering

shows the positions and orientations of the cameras

and the scene consists of textured depth measure-

ments. Additionally, the initialization of the tracker

is shown which is again based on an standard head

detection with subsequent clustering. The video con-

Figure 5: Left: Comparison of the resulting trajectories us-
ing only the photometric measure, only the volumetric mea-
sure and both measures. Right: Plot of the photometric
measure for different object centers.

tains fast movements relative to the frame rate and the

colors are challenging. On both views the center of

the head was marked per hand on all 75 frames of the

video. If the (projected) center of the most likely tar-

get has a Euclidean distance smaller than 30 pixels

to the true center of the head, the target is considered

a match. This parameter was variated to ensure the

validity of the experiment. In figure 7 the number of

matches on any view using different measures and pa-

rameters are shown.

Based on this experiment it can be said that volumet-

ric tracking alone does not work reliably. This is quite

obvious, since the tracker cannot even distinguish be-

tween the body and the head of the person. But on

the other hand the volumetric measure is able to en-

hance the tracking accuracy significantly in conjunc-

tion with the photometric measure when compared to

a color only based tracking.

The processing time of this tracking approach de-

pends mainly on the number of cameras, the number

of particles and the size of the target in pixels. For the

head tracking experiment utilizing two cameras with

a VGA resolution and 50 particles 5 frames per sec-

ond can be easily achieved on an standard office com-

puter. Further optimization and possibly the usage of

the GPU should allow for real time processing.

5 Conclusion and Future Work

In this paper a rather new tracking approach is pre-

sented. It is based on the standard technique of parti-

cle filtering and combines photometric with volumet-

ric measures to find the target and is able to utilize

multiple color and 3D cameras. The object is repre-

sented by an ellipsoid and the appearance of the ob-

ject is modeled with color histograms. The region of a

color image which originated from the object is deter-

mined by projecting the image onto the object. Addi-

tionally, the density of space is modeled with a set of



(a) Input image 1 (b) Depth image 1 (c) 3D rendering

(d) Input image 2 (e) Depth image 2 (f) 3D rendering

Figure 6: Images made with two registered 2D/3D cameras
and 3D renderings with textured depth measurements. The
initialization is displayed in 2D and 3D.

Figure 7: Number of matches for a challenging head track-
ing experiment using two 2D/3D cameras.

Gaussian kernels for every line of sight which makes

it possible to estimate the density of space which is

occupied by an object. This density is compared to

the expected density of the target in order to benefit

from the 3D information.

The general approach was adopted in this work to

multiple 2D/3D cameras which combine a color with

a PMD chip to gain depth measurements. Additional

color or ToF cameras can be incorporated as well

without any modifications. So far the control mech-

anisms which perform the initialization and the ter-

mination of the tracker are quite simple, since this

work is mainly meant as a proof of concept and not

the demonstration of a complete and working system.

It is planed in the future to implement more sophis-

ticated management routines and then to use the sys-

tem for activity recognition. The 3D information may

allow for a more precise classification of especially

multi agent behavior. Additionally, a global object

appearance model is a topic worth researching, since

this might improve the tracking in non-overlapping

views or the tracking of rotating objects.
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Grest, D., Krüger, V., and Koch, R. (2007). Single view
motion tracking by depth and silhouette information.
Image Analysis, pages 719–729.

Isard, M. and Blake, A. (1998). Condensation - conditional
density propagation for visual tracking. International
journal of computer vision, 29(1):5–28.

Kahlmann, T., Remondino, F., and Guillaume, S. (2007).
Range imaging technology: new developments and
applications for people identification and tracking.
Proc. of Videometrics IX-SPIE-IS&T Electronic Imag-
ing, 6491(Section 3).

Khan, S. and Shah, M. (2006). A multiview approach to
tracking people in crowded scenes using a planar ho-
mography constraint. Computer Vision - ECCV 2006,
3954/2006:133–146.

Sabeti, L., Parvizi, E., and Wu, Q. M. J. (2008). Vi-
sual Tracking Using Color Cameras and Time-of-
Flight Range Imaging Sensors. Journal of Multime-
dia, 3(2):28–36.

Stauffer, C. and Grimson, W. (1999). Adaptive background
mixture models for real-time tracking. Computer Vi-
sion and Pattern Recognition, 1999. IEEE, pages 246–
252.

Witzner, D., Mads, H., Hansen, S., Kirschmeyer, M.,
Larsen, R., and Silvestre, D. (2008). Cluster tracking
with Time-of-Flight cameras. 2008 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition Workshops, pages 1–6.


