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Abstract
Segmentation of vertebral bodies is useful for diagnosis of certain spine pathologies, such as scoliosis, spondy-
lolisthesis and vertebral fractures.
In this paper, we present a fast and semi-automatic approach for spine segmentation in routine clinical MR im-
ages. Segmenting a single vertebra is based on multiple-feature boundary classification and mesh inflation, and
starts with a simple point-in-vertebra initialization. The inflation retains a star-shape geometry to prevent self-
intersections and uses a constrained subdivision hierarchy to control smoothness. Analyzing the shape of the first
vertebra, the main spine direction is deduced and the locations of neighboring vertebral bodies are estimated for
further segmentation.
The method was tested on 11 routine lumbar datasets with 92 reference vertebrae resulting in a detection rate
of 93%. The average Dice Similarity Coefficient (DSC) against manual reference segmentations was 78%, which
is on par with state of the art. The main advantages of our method are high speed and a low amount of user
interaction.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image processing and computer vision]:
Segmentation—Pixel classification

1. Introduction and Prior Work

Lower back pain for adults is rather common and its preva-
lence is rising [FHA∗09]. The cancer risk from radiation ex-
posure in computed tomography (CT) imaging [RGMB10]
makes magnetic resonance imaging (MRI) preferable in
the clinical routine. However, routine MRI poses several
challenges for segmentation, such as a low and strongly
anisotropic resolution. Unlike CT’s Hounsfield unit (HU),
MRI does not have standardized units of measurement. MRI
also has a non-homogeneous intensity across the image, e.g.
the central region has higher intensity and better contrast. All
these facts are detrimental to the automation of segmentation
procedures for MRI.

Pathologies such as scoliosis (curvature in anatomical
left-right direction), vertebral fracture (crushed vertebra) and
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spondylolisthesis (misaligned vertebra) can be diagnosed
from vertebral shapes, positions and orientations, so their
segmentations are needed. Spinous processes are poorly
seen on MR images of low inter-slice resolution, which are
the routine in clinical practice. Also, transverse processes are
usually not seen at all because they are outside of the imaged
area. Therefore, we focus on the vertebral bodies instead of
the whole vertebrae.

Much research has already been done on spine seg-
mentation. There is a large number of 2D methods due
to its relative simplicity and low computational require-
ments [MCP∗09,SSQW07,HCLN09,PZWhL05,CGBM04,
EKD∗12]. As 2D approaches process individual slices they
can miss important information, such as a curvature or a po-
sitional shift in the anatomical left-right direction, so 3D ap-
proaches are preferable. But most 3D approaches focus on
CT datasets only [GS04,KWL∗08,WKL∗01]. Some are con-
cerned with detection only, not segmentation [KZS∗11].
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We are aware of only three prior fully 3D segmentation
methods applied to MRI: Hoad and Martel [HM02], Da-
vatzikos et al. [DLSH02], and Štern et al. [ŠLPV11].

Hoad and Martel [HM02] have developed a segmenta-
tion algorithm that combines thresholded region growing
with morphological filtering and masking using set shapes.
Their algorithm is initialized by one or two ellipses, and
can be split into three steps: segmentation of the vertebral
bodies, segmentation of the posterior structures, and man-
ual corrections. They used datasets with isotropic voxel size
(1x1x1 mm3), and they combined two images of a dou-
ble echo FISP acquisition sequence. Overall, it is a method
suited to assist spine surgery, using images quite different
from routinely acquired ones. They tested their method on 30
vertebrae. Surface registration error for vertebral bodies was
1.25mm±0.28mm. They also calculated average percentage
of “good” points to be 79.4%, with 3 rejected registrations
out of 30 experiments.

Davatzikos et al. [DLSH02] were mainly interested in
the registration of different spine images to a manually seg-
mented template image. An isosurface was extracted from
this template image resulting in 837 vertices (vertebral bod-
ies L1 to S1 and a corresponding portion of the spinal canal).
This deformable model was trained on 13 additional images.
In order to determine transformation, which registers a test
image with the template image, the surface model is initially
placed in the test image (overlapping the true position of the
spine segment in the test image) and hierarchically deformed
to conform to the edges of the test image. The evaluation
was done using the leave-one-out method on routine images
(0.93x0.93x3 mm3) of healthy volunteers. The average over-
lap was 81.5%±3.6%.

Štern et al. [ŠLPV11] perform the segmentation by op-
timizing 29 parameters of a 3D deterministic model of the
vertebral body. They maximized dissimilarity between in-
side and outside intensities, and steered their method by
image gradients. The method is initialized with one point
per vertebra and accompanying size, depending on anatom-
ical position, i.e. upper thoracic, lower thoracic or lum-
bar. They evaluated their method on 75 vertebral bod-
ies from nine T2-weighted images. Three of their images
were of a routine type (0.4x0.4x3 mm3), the others were
isotropic (1x1x1 mm3). The mean radial Euclidean distance
between the segmentation surface and ground truth points
was 1.85mm±0.47mm.

All three previous methods suffer from long execution
times: [HM02]–5-10 minutes per dataset, [ŠLPV11]–1-15
minutes per vertebra, and [DLSH02] do not state the ex-
ecution time, but from the authors’ other papers [SD00] it
can be deduced to be in minutes, not seconds. Both Štern et
al. and Hoad and Martel segment vertebrae independently,
i.e. each vertebra is initialized separately. Hoad and Mar-
tel’s initialization is especially detailed. These are signifi-
cant drawbacks for routine diagnostic usage. Davatzikos et
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Figure 1: High level diagram of the segmentation system.

al. [DLSH02] use only one initialization (position + orien-
tation) per dataset, and work with routine images thus their
work is similar to our work.

We are working towards a fast and automated diagno-
sis of spine disorders for routine MRI data. In this paper
we present a novel method for the segmentation of verte-
bral bodies in routine MRI datasets with highly anisotropic
voxels, e.g. 0.6x0.6x4.4 mm3. In contrast to commonly used
top-down approaches [YOS06,GS04,KWL∗08], our method
relies on the segmentation of vertebral bodies to build up the
global spine shape. This bottom-up approach is more effi-
cient because it does not employ multiple optimization steps.
Our inflation-based segmentation incorporates a novel con-
strained subdivision surface approach for efficient smooth-
ness control and a multiple features boundary-estimator.

Our system addresses the stated drawbacks of prior sys-
tems and allows for comparably robust segmentation of
pathological spine and vertebra shapes. It also does vertebra
detection. The user initializes only the segmentation of the
first vertebral body and the segmentation parameters are es-
timated from previous segmentations. It takes about 30 sec-
onds to segment a whole dataset, and our system runs on
datasets of routine quality. The quality of results in terms of
precision are comparable to the state of the art.

We also compared our method to a general segmenta-
tion method power watersheds [CGNT09] of Couprie et al.
Power watersheds are a combination of watersheds, graph
cuts, and random walker.

2. Spine Segmentation System

We implemented two different types of initialization: cen-
ter picking and freehand outline. The initialization should
be performed on a slice which is approximately central to
the spine. From either initialization we extract center coor-
dinates and take a sample of intensities (in the case of center
picking, from a small 2D neighborhood). Then, we remove
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Figure 2: Features explained on T12 vertebra from F02 dataset in Fig. 7. In all images except original: black=edge, white=non-
edges (≈vertebral body interior).

outliers and calculate minimum, maximum, mean and stan-
dard deviation. The outline initialization additionally gives
an approximate size, otherwise the average human vertebra
size is taken [MSM∗08]. Basically, it is an improved version
of the one used in [ZEB∗10] and [ZEB∗11]. We only use
center picking in this paper, for easier comparison to power
watersheds.

The main segmentation loop consists of predicting the
position of the adjacent vertebra’s center, where the next
segmentation is initiated. The required intensity statistics
are taken from the previously segmented vertebra. Thus,
the method adopts the gradual intensity change within the
dataset. See Fig. 1.

Orientation of the vertebral body is determined by fitting
an average vertebral body shape to it using the iterative clos-
est point (ICP) algorithm. The initial position for ICP is de-
termined by translating the average shape center to the seg-
mented vertebral body center. Initial orientation of the av-
erage vertebral body shape is taken from the previous ver-
tebra’s fitted orientation (except the initial vertebra, where
anatomical upright orientation is used). Initial scaling of the
average shape is determined from the radius of the inflated
mesh. The initialization brings the average shape close to
the segmented one, which makes ICP robust. ICP is then al-
lowed to optimize position, rotation and scaling to find the
best fit. We extract its main axis (head-tail axis) from the
orientation of the fitted shape.

The adjacent vertebra center estimate is placed along the
main axis at a distance proportional to the radius of the first
segmented vertebral body or, for all the others, given by the
distance between the last two segmented vertebral bodies.

The main condition for validating the segmentation is that
the difference between the radius of the current vertebral
body is within 30% of the radius of the previous vertebral
body. It also includes several other sanity checks, involving
volume, volume/surface ratio and center-center distance of
the newly and the previously segmented vertebral bodies.

Figure 3: Left: low image. Middle: original slice. Right:
high image. Bottom row: closeups. Cross-sections from the
only healthy volunteer (dataset DzZ_T1 from Tab. 1).

3. Boundary Classification

The vertebral body boundaries are estimated using multiple
features, which are classified into probabilities of the voxel v
being at a boundary, and combined to a final probability p(v)
using the mean rule (see Fig. 2). Using multiple classifiers
and then combining them is known to improve results and
robustness [KHDM98]. We apply three edge based and two
intensity based features.

The edge features are based on LH (low-high) val-
ues [ŠBSG06], Canny edges, and thresholded gradient mag-
nitudes. The difference between low and high values, L,H
indicates proximity to a boundary. The boundary probability
is deduced from these values and the current voxel v inten-
sity I by pLH(v) = ((H− I)− (I− L))/Imax, where Imax is
the maximum intensity (see Fig. 2 and Fig. 3).

Gradient magnitudes and Canny edges are multiplica-
tively enhanced using the structure tensor as described by
Fernández and Li [FL03] to improve the detection of 2-
manifold edges and suppress one-dimensional features. For
both features, the respective probability is derived by apply-
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ing a distance field (DF) and a linear transform with clipping
(LTwC), see Fig. 2.

The two intensity based features directly work on the
thresholded MRI intensities. The thresholds are taken from
the intensity statistics, i.e. the minimum and maximum val-
ues after outlier removal. We apply hole filling using mor-
phological closing. We use the binarized intensities as one
feature and the distance field constructed on this binary im-
age as a second feature, thus incorporating both sharp edges
and a smooth edge approach for mesh inflation.

After combining probabilities, true edges usually end up
having boundary probability around 90%.

4. Segmenting Individual Vertebral Bodies

Each vertebral body is segmented using an iterative infla-
tion algorithm. The algorithm starts with a small triangu-
lar surface mesh at the approximate center of the vertebral
body. This mesh is enlarged using balloon inflation forces
[Coh91], constrained by smoothness, and steered towards a
star-shape geometry.

Smoothness is enforced by using a constrained subdivi-
sion surface scheme. Star-shape is achieved by allowing the
inflation only along center-vertex direction. This deters self-
intersections of the inflated surface.

The following steps are performed iteratively:

1. Move the vertices (outwards) towards the boundary with
no regard to subdivision rules.

2. Normalize the subdivision hierarchy by moving vertices
so that they comply with subdivision rules.

3. Recalculate the polyhedron center from the polyhedron
shape to account for different inflation speed in different
directions.

4. Stop when convergence is detected.

4.1. Inflating the Mesh

We do the inflation by examining each vertex separately. De-
pending on the boundary probability, we either inflate or de-
flate the vertex along the radial (center-vertex) direction. The
step size is equal to the minimum voxel spacing, i.e. 0.5–
1.1 mm for the examined datasets.

Initially, a vertex v is in the interior and will inflate as
long as the boundary probability p(v)< 0.5. This way noise
inside the vertebral body is ignored. When p(v) ≥ 0.5 the
sign of the probability derivative δp

δ~r in inflation direction~r
decides on whether to inflate or to deflate, thereby moving
the vertex towards maximum boundary probability.

Convergence is achieved when the average center-surface
distance (“radius”) stops increasing, i.e. the radius from the
current iteration is not larger than the radii from the previous
two iterations. An additional check is whether the radius is

Figure 4: Triangular mesh model which we used. Left: base
mesh. Middle: level 1 subdivided mesh (base mesh + addi-
tional vertices). Right: level 2 subdivided mesh.
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Figure 5: Surface patch showing vertex hierarchy with two
refined levels (0–base level).

50% greater than the last vertebra. This saves computation
time in case of mis-segmentation.

If the initial center estimate for the segmentation is very
close to a boundary, the surface will inflate much more in the
opposite direction. This will result in a highly uneven distri-
bution of vertices over the surface, which is detected using
the standard deviation of the edge lengths (σ> 1 mm). In this
case, the segmentation is restarted at the current center. In
our experiments, one to two restarts with a new center have
been sufficient to resolve the problem. This mostly happens
with the second vertebra, because intervertebral distance at
that time is only an estimate.

4.2. Constrained Subdivision Hierarchy

The butterfly algorithm is the simplest interpolating sub-
division scheme working on triangle meshes. Interpolating
means that the vertex’s position, once calculated, will be a
part of all finer mesh levels and consequently is subject to
inflation and deflation. The modified butterfly was presented
by Zorin et al. [ZSS96], and it avoids problems with irregu-
lar vertices (vertices with valence6= 6).

Our base mesh consists of a closed triangular polyhedron
with 32 vertices and 60 triangles (see Figs. 4 and 5). We
create new mesh levels through the subdivision rules until
the average edge length l is comparable to the voxel size
s : s <= l < 2s, where s = 3

√sxsysz is the geometric mean of
the voxel spacings.

The inflation step repositions the vertices with no regard
to subdivision rules. Thus, we need to enforce the subdivi-
sion hierarchy for all the dependent levels afterwards. We
use a global least squares optimization, minimizing the ver-
tex position correction. Only the base mesh vertices are in-
dependent, i.e. the base mesh is the control mesh.
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Table 1: Information about the datasets used for the quanti-
tative evaluation. Sxy – voxel spacing in X and Y directions
(millimeters), Sz – spacing along Z axis. xyR – resolution of
image along X and Y axes, zR - Z resolution. AF – anisotropy
factor Sz

Sxy
. Path – pathologies (St–stenosis, SD–slipped disc,

Sco–scoliosis, VF–vertebra fracture, SL–spondylolisthesis).

Dataset Sxy Sz xyR zR AF Path.
Ble 0.63 4.4 512 14 7.04 St,SD
C002 1.12 3.3 448 31 2.96 Sco
DzZ_T1 0.68 4.4 512 12 6.44 None
F02 0.5 3.85 768 18 7.70 VF,SL
F03 1.19 3.3 320 25 2.77 VF
Geh 0.63 4.4 512 10 7.04 SD
LC 0.73 4.4 384 14 6.03 SD
S01 0.47 3.85 640 16 8.19 SL
S02 0.47 3.85 640 16 8.19 SL
Sch 0.63 4.4 512 16 7.04 St,SL
St1 0.5 3.85 704 20 7.70 St
Average 0.68 4.0 541 17 6.46
StdDev 0.25 0.43 135 6 1.90

If there are many vertices in the base mesh, overshoot-
ing effects start to appear, which is frequent in interpolating
schemes. This can be avoided by using a low or moderate
number of vertices in the base mesh, or by applying slight
smoothing after each iteration, thus fighting noise and small
ambiguities in the data.

5. Results

Testing was done on a machine with Intel Core i7-
920 2.67GHz processor. Preprocessing of typical images
(512x512x16) takes about 15 seconds. The individual verte-
bra segmentation time was about one to three seconds. With
about eight vertebrae visible in most images, it puts the total
processing time to about 30 seconds per dataset. That is sig-
nificantly better than the other spine MRI 3D methods, and
almost the same as the power watersheds method which is
inferior to ours in terms of quality.

We tested our method on ten pathological datasets from
various hospitals and one dataset from a healthy volunteer.
The reference segmentations were done by neurosurgeons,
who manually traced the vertebral body edges in the sagittal
plane. The images were mostly T2-weighted, mostly from
middle-aged and older patients. The important property of
these datasets is the high anisotropy of voxel size between
3x and 8x (see Tab. 1 and Fig. 7). Coronal and axial views
show the anisotropy.

The datasets with more severe pathologies (e.g. crushed
vertebra) have lower DSC than less noticeable pathologies
(e.g. stenosis). Pathologies also reduce the detection rate.

Figure 6: One cross-section of seeds overlaid on image
(dataset Ble). Blue are background seeds, yellow are seeds of
vertebral bodies. It is noticeable on V.B. seeds that they have
different Z-positions (they appear to be of different sizes on
this cross-section).

5.1. Test Setup

Besides comparison to methods developed specifically for
MRI of spine, we also subjected all our datasets to gen-
eral segmentation method, power watersheds of Couprie et
al. [CGNT09]. The source code for this method is publicly
available, so we could run it on the same datasets as our own
method. Execution time of power watersheds on a typical
dataset (512x512x16) is about 20 seconds.

The graph cuts method (and its extension power water-
sheds) is well suited for interactive segmentation, a mode
where additional seeds are placed until a satisfactory seg-
mentation is achieved. It is not suitable for semi-automatic
segmentation, because it requires a lot of seeds and can
lead to unplausible results which requires additional seed
placement. Initializing this method in 3D manually is quite
painstaking so we opted for automatic seed creation, derived
from ground truth data, for the purpose of a thorough com-
parison.

One seed was placed into each vertebral body on a random
position near the center, and twice as many seeds into the
background (Fig. 6). Since background seeds were large (20
voxel radius), they were clipped by a safety region of interest
around vertebral bodies. This safety region was created by
morphologically dilating ground truth vertebral body masks
with a 20 voxel radius spherical structuring element (Fig. 6).
There was one such initialization for each vertebra in the
dataset, and we used one of these vertebra seeds centers to
initialize our method so it gets initialized once at each of the
vertebral bodies of all the datasets.

As there were 92 reference segmented vertebrae, we had
92 different initializations for both power watersheds and
our method (“all VB” row in Tab. 2). Power watersheds
crashed on datasets F02 and St1 (with ≈10 million vox-
els) due to hitting 2GB user memory limit (Win32), hence
the lower number of reference vertebrae in Tab. 2. Since our
method should be initialized at a vertebral body near the cen-
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Figure 7: Overlay of reference segmentation and the one produced by power watersheds (top row) and our method (bottom
two rows). Images were cropped to save space (unimportant parts were cut off). Real image sizes were 448x448x31 with
1.1x1.1x3.3 mm3 voxels (top and middle, C002) and 768x768x18 with 0.5x0.5x3.85 mm3 voxels (bottom image, F02). DSC
were 65%, 75% and 75%.

ter of the image, and preferably on a segment which is not
pathological (so first 2 vertebral bodies are segmented cor-
rectly), we also ran the test without initializing edge verte-
brae (2 uppermost and 1 lowermost vertebra were excluded,
“mid VB” row). Our method provides the best results with
manual initialization by an experienced user (“manual ini-
tialization” row).

The overview of results is given in Tab. 2. In Tab. 3, per
vertebra statistics are given for power watersheds method

along the results of our method for automatic initialization
at all vertebrae.

We measured surface distance errors using the Metro
mesh comparison tool [CRS96]. Distance error is measured
by iterating through vertices and sample points on polygons
of the segmentation surface and measuring the distance to
the closest point of the reference surface.

The mean distance of segmentation from the reference
surface is 2.15mm±1.02mm. To get a relative measure, we
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Table 2: Overview of segmentation results for our method
and power watersheds. DSC is the average Dice Similarity
Coefficient. Dist is the mean distance of segmented surface
to reference surface in millimeters. DR is detection rate (how
many vertebral bodies were discovered and segmented). De-
tection was not done for PW, only segmentation. NR is num-
ber of reference vertebrae used. Auto means automatic ini-
tialization from ground truth data.

Method, Init. DSC Dist DR NR
Power Watersheds 68%±17% 7.87 - 659
Our, auto all VB 74%±16% 2.21 50% 804
Our, auto mid VB 76%±13% 2.08 62% 528
Our, manual init. 78%±8% 2.15 93% 92

Table 3: Spine segmentation system results with automated
randomized initializations. V.C.–vertebra count in all 11
datasets. pwD and ourD–mean surface distance in mm.

Vert. V.C. pwDSC pwD ourDSC ourD
T6 1 61.63% 3.28 19.44% 14.03
T7 1 61.21% 6.39 62.98% 3.38
T8 1 76.98% 2.46 74.34% 1.77
T9 2 63.96% 7.89 73.77% 2.21
T10 4 62.25% 10.32 73.45% 2.55
T11 7 67.29% 7.31 69.51% 2.69
T12 11 69.38% 9.31 71.28% 2.52
L1 11 72.80% 7.10 75.71% 1.98
L2 11 77.45% 4.07 78.11% 1.77
L3 11 74.44% 5.38 78.41% 1.88
L4 11 70.14% 7.83 77.32% 1.72
L5 11 70.81% 7.50 75.11% 2.03
S1 10 44.59% 15.92 64.51% 3.05
Avg. 68.11% 7.87 74.05% 2.21
StdDev 16.57% 9.21 16.09% 1.37

would divide this by the voxel size. In our case of anisotropic
voxels, we divide by the edge of isotropic voxel which is
equivalent by volume, Aiso = 3

√sxsysz. Average Aiso for these
11 datasets is 1.21mm±0.25mm, and relative distance is
1.73±0.99.

5.2. Discussion

The average DSC of 78% is close to Davatzikos et al. with
81%, but they used healthy individuals. Healthy volunteer
datasets are easier to segment and achieve better DSC and
distance scores. In the three different tests from Tab. 2, the
DSC results for the healthy volunteer were 77%, 80% and
86% respectively, or higher than average by 3, 4 and 8 per-
centage points.

Our method is clearly better than that of Štern et al. at
1.85mm±0.47mm, because they used isotropic voxels of
1 mm3 and this should be compared to our relative distance
error of 1.73±0.99. Hoad and Martel’s surgery-oriented
method with thorough initialization and manual correction

Figure 8: Surface overlay of our segmentation (green) and
power watersheds (yellow). Red is the reference segmen-
tation. Reference and PW surfaces were derived from bi-
nary masks using marching cubes. L2 vertebral body from
DzZ_T1 dataset. DSC: PW–85%, our–88%.

of segmentation at 1.25mm±0.28mm mean distance error
remains more precise than ours. Contributing reason for
higher variance in our result is a high anisotropy factor
(6.47).

Our method is vastly superior to power watersheds for
the purpose of vertebral body segmentation in MRI, as
it has similar execution time, higher DSC and signifi-
cantly lower distance error. Power watersheds have lower
DSC than our method in spite of fairly rich initialization
(Fig. 6). Power watersheds frequently produce some pro-
truding spikes (Fig. 8). These spikes are thin, so they do not
hurt DSC measure so much, but surface distance errors are
significant (7.87mm).

The majority of discrepancies between manual and auto-
matic segmentations stem from lateral slices (Fig. 7), where
it is harder to algorithmically discern a boundary due to sig-
nificant partial volume effects. Power watersheds mostly fail
on lateral edges of vertebral bodies too (Fig. 7 and Fig. 8).

The quality of the segmentation could have been further
improved if we did not do detection based on the segmen-
tation, but rather strongly guided the segmentation towards
the expected size. This approach, however, significantly de-
creases the reliability of any subsequent diagnosis, which we
have already started working on but do not present in this pa-
per.

6. Conclusion

We presented a bottom-up approach for spine segmenta-
tion in routine MRI. Our segmentation is fast and robust
with respect to the low and anisotropic resolution of rou-
tine MRI datasets and to pathological spine and vertebra
shapes. Our vertebral body segmentation method is inflation-
based and incorporates a novel constrained subdivision sur-
face approach for smoothness control and a multiple features
boundary estimator. The spine segmentation requires only
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minimal user interaction and takes about half a minute to
segment the whole dataset.

Our method was tested on a larger set of vertebrae than
prior work. Hoad and Martel tested their method on 30 ver-
tebrae, Štern et al. on 75 vertebral bodies in MR modality,
and Davatzikos et al. on 84 vertebral bodies from healthy
volunteers. We tested our method on 92 vertebral bodies (83
from pathological datasets and 9 from a healthy volunteer).
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