
Real-time 3D Reconstruction in Dynamic Scenes using Point-based Fusion

Maik Keller
pmdtechnologies

Damien Lefloch
University of Siegen

Martin Lambers
University of Siegen

Shahram Izadi
Microsoft Research

Tim Weyrich
University College London

Andreas Kolb
University of Siegen

Abstract

Real-time or online 3D reconstruction has wide appli-
cability and receives further interest due to availability of
consumer depth cameras. Typical approaches use a mov-
ing sensor to accumulate depth measurements into a single
model which is continuously refined. Designing such systems
is an intricate balance between reconstruction quality, speed,
spatial scale, and scene assumptions. Existing online meth-
ods either trade scale to achieve higher quality reconstruc-
tions of small objects/scenes. Or handle larger scenes by
trading real-time performance and/or quality, or by limiting
the bounds of the active reconstruction. Additionally, many
systems assume a static scene, and cannot robustly handle
scene motion or reconstructions that evolve to reflect scene
changes. We address these limitations with a new system
for real-time dense reconstruction with equivalent quality
to existing online methods, but with support for additional
spatial scale and robustness in dynamic scenes. Our system
is designed around a simple and flat point-based represen-
tation, which directly works with the input acquired from
range/depth sensors, without the overhead of converting be-
tween representations. The use of points enables speed and
memory efficiency, directly leveraging the standard graphics
pipeline for all central operations; i.e., camera pose estima-
tion, data association, outlier removal, fusion of depth maps
into a single denoised model, and detection and update of
dynamic objects. We conclude with qualitative and quantita-
tive results that highlight robust tracking and high quality
reconstructions of a diverse set of scenes at varying scales.

1. Introduction and Background

Online 3D reconstruction receives much attention as inex-
pensive depth cameras (such as the Microsoft Kinect, Asus
Xtion or PMD CamBoard) become widely available. Com-
pared to offline 3D scanning approaches, the ability to obtain
reconstructions in real time opens up a variety of interactive
applications including: augmented reality (AR) where real-
world geometry can be fused with 3D graphics and rendered
live to the user; autonomous guidance for robots to recon-

struct and respond rapidly to their environment; or even to
provide immediate feedback to users during 3D scanning.

The first step of the reconstruction process is to acquire
depth measurements either using sequences of regular 2D
images (e.g. [19]), or with active sensors, such as laser
scanners or depth cameras, based on triangulation or time-
of-flight (ToF) techniques. Unlike methods that focus on
reconstruction from a complete set of 3D points [5, 7], on-
line methods require fusion of many overlapping depth maps
into a single 3D representation that is continuously refined.
Typically methods first find correspondences between depth
maps (data association) and register or align depth maps to
estimate the sensor’s egomotion [1, 24]. The fusion method
typically involves removal of outliers e.g. by visibility test-
ing between depth maps [16], observing freespace violations
[2], or photo-consistency [12], and merging of measurements
into the global model, e.g. using simple weighted averaging
[2] or more costly spatial regularization [25, 12].

Recent online systems [6, 11] achieve high-quality results
by adopting the volumetric fusion method of Curless and
Levoy [2]. This approach supports incremental updates, ex-
ploits redundant samples, makes no topological assumptions,
approximates sensor uncertainty, and fusion is performed
using a simple weighted average. For active sensors, this
method produces very compelling results [2, 9, 6, 11]. The
drawbacks are the computational overheads needed to con-
tinuously transition between different data representations:
Where point-based input is converted to a continuous implicit
function, discretized within a regular grid data structure, and
converted back to an (explicit) form using expensive poly-
gonization [10] or raycasting [14] methods. As well as the
memory overheads imposed by using a regular voxel grid,
which represents both empty space and surfaces densely, and
thus greatly limits the size of the reconstruction volume.

These memory limitations have led to moving-volume
systems [17, 23], which still operate on a very restricted
volume, but free-up voxels as the sensor moves; or hierarchi-
cal volumetric data structures [26], which incur additional
computational and data structure complexity for only limited
gains in terms of spatial extent.

Beyond volumetric methods, simpler representations have

1



also been explored. Height-map representations [3] work
with compact data structures allowing scalability, especially
suited for modeling large buildings with floors and walls,
since these appear as clear discontinuities in the height-
map. Multi-layered height-maps support reconstruction of
more complex 3D scenes such as balconies, doorways, and
arches [3]. While these methods support compression of
surface data for simple scenes, the 2.5D representation fails
to model complex 3D environments efficiently.

Point-based representations are more amenable to the
input acquired from depth/range sensors. [18] used a point-
based method and custom structured light sensor to demon-
strate in-hand online 3D scanning. Online model rendering
required an intermediate volumetric data structure. Interest-
ingly, an offline volumetric method [2] was used for higher
quality final output, which nicely highlights the computa-
tional and quality trade-offs between point-based and volu-
metric methods. [22] took this one step further, demonstrat-
ing higher quality scanning of small objects using a higher
resolution custom structured light camera, sensor drift correc-
tion, and higher quality surfel-based [15] rendering. These
systems however focus on single small object scanning. Fur-
ther, the sensors produce less noise than consumer depth
cameras (due to dynamic rather than fixed structured light
patterns), making model denoising less challenging.

Beyond reducing computational complexity, point-based
methods lower the memory overhead associated with vol-
umetric (regular grid) approaches, as long as overlapping
points are merged. Such methods have therefore been used
in larger sized reconstructions [4, 20]. However, a clear
trade-off becomes apparent in terms of scale versus speed
and quality. For example, [4] allow for reconstructions of
entire floors of a building (with support for loop closure and
bundle adjustment), but frame rate is limited (∼ 3 Hz) and an
unoptimized surfel map representation for merging 3D points
can take seconds to compute. [20] use a multi-level surfel
representation that achieves interactive rates (∼ 10 Hz) but
require an intermediate octree representation which limits
scalability and adds computational complexity.

In this paper we present an online reconstruction system
also based around a flat, point-based representation, rather
than any spatial data structure. A key contribution is that our
system is memory-efficient, supporting spatially extended
reconstructions, but without trading reconstruction quality
or frame rate. As we will show, the ability to directly render
the representation using the standard graphics pipeline, with-
out converting between multiple representations, enables
efficient implementation of all central operations, i.e., cam-
era pose estimation, data association, denoising and fusion
through data accumulation, and outlier removal.

A core technical contribution is leveraging a fusion
method that closely resembles [2] but removes the voxel
grid all-together. Despite the lack of a spatial data structure,

our system still captures many benefits of volumetric fusion,
with competitive performance and quality to previous online
systems, allowing for accumulation of denoised 3D models
over time that exploit redundant samples, model measure-
ment uncertainty, and make no topological assumptions.

The simplicity of our approach allows us to tackle another
fundamental challenge of online reconstruction systems: the
assumption of a static scene. Most previous systems make
this assumption or treat dynamic content as outliers [18, 22];
only KinectFusion [6] is at least capable of reconstructing
moving objects in a scene, provided a static pre-scan of the
background is first acquired. Instead, we leverage the imme-
diacy of our representation to design a method to not only
robustly segment dynamic objects in the scene, which greatly
improves the robustness of the camera pose estimation, but
also to continuously update the global reconstruction, regard-
less of whether objects are added or removed. Our approach
is further able to detect when a moving object has become
static or a stationary object has become dynamic.

The ability to support reconstructions at quality compara-
ble to state-of-the-art, without trading real-time performance,
with the addition of extended spatial scale and support for
dynamic scenes provides unique capabilities over prior work.
We conclude with results from reconstructing a variety of
static and dynamic scenes of different scales, and an experi-
mental comparison to related systems.

2. System Overview
Our high-level approach shares commonalities with the

existing incremental reconstruction systems (presented previ-
ously): we use samples from a moving depth sensor; first pre-
process the depth data; then estimate the current six degree-
of-freedom (6DoF) pose of sensor relative to the scene; and
finally use this pose to convert depth samples into a unified
coordinate space and fuse them into an accumulated global
model. Unlike prior systems, we adopt a purely point-based
representation throughout our pipeline, carefully designed
to support data fusion with quality comparable to online vol-
umetric methods, whilst enabling real-time reconstructions
at extended scales and in dynamic scenes.

Our choice of representation makes our pipeline ex-
tremely amenable to implementation using commodity
graphics hardware. The main system pipeline as shown
in Fig. 1 is based on the following steps:

Figure 1. Main system pipeline.

Depth Map Preprocessing Using the intrinsic parame-
ters of the camera, each input depth map from the depth



sensor is transformed into a set of 3D points, stored in a
2D vertex map. Corresponding normals are computed from
central-differences of the denoised vertex positions, and per-
point radii are computed as a function of depth and gradient
(stored in respective normal and radius maps).

Depth Map Fusion Given a valid camera pose, input
points are fused into the global model. The global model is
simply a list of 3D points with associated attributes. Points
evolve from unstable to stable status based on the confi-
dence they gathered (essentially a function of how often they
are observed by the sensor). Data fusion first projectively
associates each point in the input depth map with the set
of points in the global model, by rendering the model as
an index map. If corresponding points are found, the most
reliable point is merged with the new point estimate using
a weighted average. If no reliable corresponding points are
found, the new point estimate is added to the global model as
an unstable point. The global model is cleaned up over time
to remove outliers due to visibility and temporal constraints.
Sec. 4 discusses our point-based data fusion in detail.

Camera Pose Estimation All established (high confi-
dence) model points are passed to the visualization stage,
which reconstructs dense surfaces using a surface splatting
technique (see Sec. 5). To estimate the 6DoF camera pose,
the model points are projected from the previous camera
pose, and a pyramid-based dense iterative closest point (ICP)
[11] alignment is performed using this rendered model map
and input depth map. This provides a new relative rigid 6DoF
transformation that maps from the previous to new global
camera pose. Pose estimation occurs prior to data fusion, to
ensure the correct projection during data association.

Dynamics Estimation A key feature of our method is
automatic detection of dynamic changes in the scene, to
update the global reconstruction and support robust camera
tracking. Dynamic objects are initially indicated by outliers
in point correspondences during ICP. Starting from these
areas, we perform a point-based region growing procedure to
identify dynamic regions. These regions are excluded from
the camera pose estimate, and their corresponding points
in the global model are reset to unstable status, leading to
a natural propagation of scene changes into our depth map
fusion. For more detail, see Sec. 6.

3. Depth Map Preprocessing
We denote a 2D pixel as u = (x,y)>∈ R2. Di ∈ R is the

raw depth map at time frame i. Given the intrinsic camera
calibration matrix Ki, we transform Di into a corresponding
vertex map Vi, by converting each depth sample Di(u) into
a vertex position vi(u) = Di(u)K−1

i (u>,1)> ∈ R3 in cam-
era space. A corresponding normal map Ni is determined
from central-differences of the vertex map. A copy of the
depth map (and hence associated vertices and normals) are

also denoised using a bilateral filter [21] (for camera pose
estimation later).

The 6DoF camera pose transformation comprises of rota-
tion (Ri ∈ SO3) matrix and translation (ti ∈ R3) vector, com-
puted per frame i as Ti = [Ri, ti]∈ SE3. A vertex is converted
to global coordinates as vg

i = Tivi. The associated normal is
converted to global coordinates as ng

i (u) = Ri ni(u). Multi-
scale pyramids V l

i and N l
i are computed from vertex and

normal maps for hierarchical ICP, where l ∈ {0,1,2} and
l = 0 denotes the original input resolution (e.g. 640×480 for
Kinect or 200×200 for PMD CamBoard).

Each input vertex also has an associated radius ri(u) ∈ R
(collectively stored in a radius mapRi ∈ R), determined as
in [22]. To prevent arbitrarily large radii from oblique views,
we clamp radii for grazing observations exceeding 75◦.

In the remainder, we omit time frame indices i for clarity,
unless we refer to two different time frames at once.

4. Depth Map Fusion

Our system maintains a single global model, which is
simply an unstructured set of points P̄k each with associated
position v̄k ∈ R3, normal n̄k ∈ R3, radius r̄k ∈ R, confidence
counter c̄k ∈ R, and time stamp t̄k ∈ N, stored in a flat array
indexed by k ∈ N.

New measurements v are either added as or merged with
unstable points, or they get merged with stable model points.
Merging v with a point P̄k in the global model increases the
confidence counter c̄k. Eventually an unstable point changes
its status to stable: points with c̄k ≥ cstable are considered
stable (in practice cstable = 10). In specific temporal or geo-
metric conditions, points are removed from the global model.

4.1. Data Association

After estimation of the camera pose of the current input
frame (see Sec. 5), each vertex vg and associated normal and
radius are integrated into the global model.

In a first step, for each valid vertex vg, we find potential
corresponding points on the global model. Given the inverse
global camera pose T−1 and intrinsics K, each point P̄k in
the global model can be projected onto the image plane
of the current physical camera view, where the respective
point index k is stored: we render all model points into a
sparse index map I. Unlike the splat-based dense surface
reconstruction renderer used in other parts of our pipeline
(see Sec. 5), this stage renders each point index into a single
pixel to reveal the actual surface sample distribution.

As nearby model points may project onto the same pixel,
we increase the precision of I by supersampling, represent-
ing I at 4×4 the resolution of the input depth map. We start
identifying model points near vg(u) by collecting point in-
dices within the 4×4-neighborhood around each input pixel
location u (suitably coordinate-transformed from D to I).



Amongst those points, we determine a single corresponding
model point by applying the following criteria:

1. Discard points larger than ±δdepth distance from the
viewing ray vg(u) (the sensor line of sight), with δdepth
adapted according to sensor uncertainty (i.e. as a func-
tion of depth for triangulation-based methods [13]).

2. Discard points whose normals have an angle larger than
δnorm to the normal ng(u). (We use δnorm = 20◦.)

3. From the remaining points, select the ones with the
highest confidence count.

4. If multiple such points exist, select the one closest to
the viewing ray through vg(u).

4.2. Point Averaging with Sensor Uncertainty

If a corresponding model point P̄k is found during data
association, this is averaged with the input vertex vg(u) and
normal ng(u) as follows:

v̄k←
c̄kv̄k +αvg(u)

c̄k +α
, n̄k←

c̄kn̄k +αng(u)
c̄k +α

, (1)

c̄k← c̄k +α , t̄k← t , (2)

where t is a new time stamp. Our weighted average is distinct
from the original KinectFusion system [11], as we introduce
an explicit sample confidence α . This applies a Gaussian
weight on the current depth measurement as α = e−γ2/2σ2 ,
where γ is the normalized radial distance of the current depth
measurement from the camera center, and σ = 0.6 is derived
empirically. This approach weights measurements based on
the assumption that measurements closer to the sensor center
will increase in accuracy [2]. As shown in Fig. 2, modeling
this sensor uncertainty leads to higher quality denoising.

Figure 2. Weighted averaging of points using our method (left) and
the method of [11] (right).

Since the noise level of the input measurement increases
as a function of depth [13], we apply Eqs. (1) only if the
radius of the new point is not significantly larger than the
radius of the model point, i.e., if r(u) ≤ (1+ δr)r̄; we em-
pirically chose δr = 1/2. This ensures that we always refine
details, but never coarsen the global model. We apply the
time stamp and the confidence counter updates according to
Eqs. (2) irrespectively.

If no corresponding model point has been identified, a
new unstable point is added to the global model with c̄k = α ,
containing the input vertex, normal and radius.

4.3. Removing Points

So far we have merged or added new measurements to
the global model. Another key step is to remove points from
our global model due to various conditions:

1. Points that remain in the unstable state for a long time
are likely outliers or artifacts from moving objects and
will be removed after tmax time steps.

2. For stable model points that are merged with new data,
we remove all model points that lie in front of these
newly merged points, as these are free-space violations.
To find these points to remove, we use the index map
again and search the neighborhood around the pixel
location that the merged point projects onto1. This is
similar in spirit to the free-space carving method of [2],
but avoids expensive voxel space traversal.

3. If after averaging, a stable point has neighboring points
(identified again via the index map) with very similar
position and normal and their radii overlap, then we
merge these redundant neighboring points to further
simplify the model.

Points are first marked to be removed from P̄k, and in a
second pass, the list is sorted (using a fast radix sort imple-
mentation), moving all marked points to the end, and finally
items deleted.

5. Camera Pose Estimation
Following the approach of KinectFusion [11], our camera

pose estimation uses dense hierarchical ICP to align the bilat-
eral filtered input depth map Di (of the current frame i) with
the reconstructed model by rendering the model into a virtual
depth map, or model map, D̂i−1, as seen from the previous
frame’s camera pose Ti−1. We use 3 hierarchy levels, with
the finest level at the camera’s resolution; unstable model
points are ignored. The registration transformation provides
the relative change from Ti−1 to Ti.

While KinectFusion employs raycasting of the (implicit)
voxel-based reconstruction, we render our explicit, point-
based representation using a simple surface-splatting tech-
nique: we render overlapping, disk-shaped surface splats
that are spanned by the model point’s position v̄, radius r̄
and orientation n̄. Unlike more refined surface-splatting
techniques, such as EWA Surface Splatting [27], we do not
perform blending and analytical prefiltering of splats but
trade local surface reconstruction quality for performance by
simply rendering opaque splats.

We use the same point-based renderer for user feedback,
but add Phong shading of surface splats, and also overlay
the dynamic regions of the input depth map.

1Backfacing points that are close to the merged points remain protected—
such points may occur in regions of high curvature or around thin geometry
in the presence of noise and slight registration errors. Furthermore, we
protect points that would be consistent with direct neighbor pixels in D, to
avoid spurious removal of points around depth discontinuities.



6. Dynamics Estimation
The system as described above already has limited sup-

port for dynamic objects, in that unstable points must gain
confidence to be promoted to stable model points, and so
fast moving objects will be added and then deleted from the
global model. In this section we describe additional steps
that lead to an explicit classification of observed points as
being part of a dynamic object. In addition, we aim at seg-
menting entire objects whose surface is partially moving and
remove them from the global point model.

We build upon an observation by Izadi et al. [6]: when
performing ICP, failure of data association to find model
correspondences for input points is a strong indication that
these points are depth samples belonging to dynamic objects.
Accordingly, we retrieve this information by constructing
an ICP status map S (with elements si(u)) that encodes for
each depth sample the return state of ICP’s search for a
corresponding model point in the data association step:
no input: vk(u) is invalid or missing.
no cand: No stable model points in proximity of vk(u).
no corr: Stable model points in proximity of, but no

valid ICP correspondence for vk(u).
corr: Otherwise ICP found a correspondence.

Input points marked as no corr are a strong initial estimate
of parts of the scene that move independent of camera mo-
tion, i.e. dynamic objects in the scene.

We use these points to seed our segmentation method
based on hierarchical region growing (see below). It creates
a dynamics map X, storing flags xi(u), that segments the
current input frame into static and dynamic points. The
region growing aims at marking complete objects as dynamic
even if only parts of them actually move. (Note that this high-
level view on dynamics is an improvement over the limited
handling of dynamics in previous approaches, e.g., [6].)

In the depth map fusion stage, model points that are
merged with input points marked as dynamic are potentially
demoted to unstable points using the following rule:

if xi(u) ∧ c̄k ≥ cstable +1 then c̄k← 1 (3)

Thus, the state change from static to dynamic is reflected
immediately in the model. A critical aspect is the offset
of +1 in Eq. (3): it ensures that any dynamic point that
sufficiently grew in confidence (potentially because it is now
static) is allowed to be added to the global model for at
least one iteration; otherwise, a surface that has once been
classified as dynamic would never be able to re-added to the
global model, as it would always be inconsistent with the
model, leading to no corr classification.

For the bulk of the time, however, dynamic points remain
unstable and as such are not considered for camera pose
estimation (see Sec. 5), which greatly improves accuracy
and robustness of T.

Hierarchical Region Growing The remainder of this sec-
tion explains the region growing-based segmentation ap-
proach that computes the map X.

The goal is essentially to find connected components in
D. In the absence of explicit neighborhood relations in
the point data, we perform region growing based on point
attribute similarity. Starting from the seed points marked in
X, we agglomerate points whose position and normal are
within given thresholds of vertex v(u) and normal n(u) of a
neighbor with x(u) = true.

To accelerate the process, we start at a downsampled X 2,
and repeatedly upsample until we reach X 0 = X, each time
resuming region growing. (We reuse the input pyramids built
for camera pose estimation.)

We improve robustness to camera noise and occlusions
by removing stray no corr points through morphological
erosion at the coarsest pyramid level X 2 after initializing
it from S. This also ensures that X 2 covers only the inner
region of dynamic objects.

7. Results
We have tested our system on a variety of scenes (see

Table 1 ). Fig. 3 shows a synthetic scene Sim. We generated
rendered depth maps for a virtual camera rotating around

#frames #model- Avg. timings [ms]
input/processed points ICP Dyn- Fusion
(fps in./proc.) Seg.

Sim 950/950 467,200 18.90 2.03 11.50
(15/15)

Flower- 600/480 496,260 15.87 1.90 6.89
pot (30/24)
Teapot 1000/923 191,459 15.20 1.60 5.56

(30/27)
Large 11892/6704 4,610,800 21.75 2.39 13.90
Office (30/17)
Moving 912/623 210,500 15.92 3.23 16.61
Person (30/20)
Ball- 1886/1273 350,940 16.74 3.15 17.66
game (30/21)
PMD 4101/4101 280,050 10.70 0.73 3.06

(27/27)
Table 1. Results from test scenes obtained on a PC equipped with
an Intel i7 8-core CPU and an NVidia GTX 680 GPU. Input frames
have a size of 640×480 pixels, except for the PMD scene which
uses a frame size of 200×200.

Figure 3. The synthetic scene Sim. Left: error in final global model
based on ground truth camera transformations. Right: final error
based on ICP pose estimation2.



Figure 4. The scenes Flowerpot (top row) and Teapot (bottom row).
A and B show reconstruction results of the original KinectFusion
system. The other images show our method (middle: phong-shaded
surfels, right: model points colored with surface normals).

this scene and used these as input to our system. This gave
us ground truth camera transformations TGT

i and ground
truth scene geometry. Using TGT

i , the points in the resulting
global model have a mean position error of 0.019 mm. This
demonstrates only minimal error for our point-based data
fusion approach. The camera transformations Ti obtained
from ICP have a mean position error of 0.87 cm and a mean
viewing direction error of 0.1 degrees. This results in a mean
position error of 0.20 cm for global model points.

The Flowerpot and Teapot scenes shown in Fig. 4 were
recorded by Nguyen et al. [13]. Objects are placed on a
turntable which is rotated around a stationary Kinect camera.
Vicon is used for ground truth pose estimation of the Kinect,
which are compared to ICP for our method and the original
KinectFusion system Fig. 5

Fig. 6 shows that the number of global model points for
these scenes remains roughly constant after one full turn
of the turntable. This demonstrates that new points are not
continuously added; and the global model is refined but kept
compact. Note that one Kinect camera input frame provides
up to 307,200 input points, but the total number of points in
the final global teapot model is less than 300,000.

The Large Office scene shown in Fig. 7 consists of
two rooms with a total spatial extent of approximately
10m× 6m× 2.5m. A predefined volumetric grid with 32-
bit voxels and 512 MB of GPU memory would result in a
voxel size of more than 1 cm3. In contrast, our system does
not define the scene extents in advance: the global model
grows as required. Furthermore, it does not limit the size
of representable details; Fig. 7 shows close-ups of details
on the millimeter scale (e.g. the telephone keys). The 4.6
million global model points reported in Tab. 1 can be stored
in 110 MB of GPU memory using 3 floating point values
for the point position, 2 for the normalized point normal, 1
for the radius, and one extra byte for a confidence counter.
Additionally, RGB colors can be stored for each global point,
to texture the final model (see Fig. 7 far right). Rather than

2Rendered using CloudCompare, http://www.danielgm.net/cc/.

Figure 5. Tracking errors for the original KinectFusion system
compared to our point-based approach. Tracking results were
computed on the Flowerpot sequence, by subtracting Vicon ground
truth data from the resulting per frame 3D camera position. For
each system, error is computed as the absolute distance between
the estimated camera position and the ground truth position (after
aligning both coordinate spaces manually). Where the error of the
original KinectFusion exceeds that of the new, the gap is colored
blue. Where the error of our method exceeds the original, the gap
is colored red. Note our method is similar in performance with the
largest delta being ∼ 1cm.

Figure 6. The number of global model points stored on the GPU
plotted over time for the Flowerpot and Teapot scenes. Note after
the completion of one full turn of the turntable, the number of
points converges instead of continuously growing.

merge RGB samples, we simply store the last one currently.
In the Moving Person scene shown in Fig. 8, the person

first sits in front of the sensor and is reconstructed before
moving out of view. Since the moving person occupies
much of the field of view, leaving only few reliable points
for ICP, camera tracking fails with previous approaches (see
e.g. Izadi et al. Fig. 8 [6]). Our system segments the moving
person and ignores dynamic scene parts in the ICP stage,
thereby ensuring robustness to dynamic motion.

The Ballgame scene shown in Fig. 9 shows two people
playing with a ball across a table. Our region growing ap-
proach segments dynamics on the object level instead of just

http://www.danielgm.net/cc/


Figure 7. The Large Office scene, consisting of two large rooms and connecting corridors. A: overview; B and C: dynamically moving
objects during acquisition; Note the millimeter scale of the phone’s keypad. Other close-ups are also shown (right column: RGB textured).

Figure 8. The Moving Person scene. Person sits on a chair, is
reconstructed, and then moves. Dynamic parts occupy much of the
field-of-view and cause ICP errors with previous approaches (top
row). Segmenting the dynamics (A) and ignoring them during pose
estimation (B) allows increased robustness (bottom row).

the point level: each person is recognized as dynamic even if
only parts of their bodies are actually moving. Static objects
that start moving are marked as dynamic and their model
points are demoted to unstable status, while dynamic objects
that stop moving eventually reach stable status in the global
model when the observed points gain enough confidence.

Most scenes shown throughout this paper were recorded
with a Microsoft Kinect camera in near mode, but our method
is agnostic to the type of sensor used. Fig. 10 shows an ex-
ample scene recorded with a PMD CamBoard ToF camera,
which exhibits significantly different noise and error charac-
teristics [8]. In this example, we used the per-pixel amplitude
information provided by PMD sensors in the computation of
the sample confidence α (see Sec. 4.2).

8. Conclusion
We have presented a new system for online 3D recon-

struction which demonstrates new capabilities beyond the
state-of-art. Our system has been explicitly designed to allow

Figure 9. The Ballgame scene consists of two people moving a
ball across a table. A: global model colored with surface normals;
B: raw input data of the previously static ball being picked up; C:
segmentation of dynamic parts; Bottom row: reconstructed result
(model points + dynamic parts).

Figure 10. A: the PMD scene acquired with a PMD ToF camera. B
and C: close-ups using per-pixel intensity values for coloring.

for a single point-based representation to be used through-
out our pipeline, which closely fits the sensor input, and is
amenable to rendering (for visualization and data associa-
tion) through the standard graphics pipeline.

Despite the lack of a spatial data structure, our system
still captures many benefits of volumetric fusion, allowing
for accumulation of denoised 3D models over time that ex-
ploit redundant samples, model measurement uncertainty,
and make no topological assumptions. This is achieved
using a new point-based fusion method based on [2]. Recon-
structions at this scale, quality, speed and with the ability to
deal with scene motion and dynamic updates have yet to be
demonstrated by other point-based methods, and are core
contributions of our work.



There are many areas for future work. For example, whilst
our system scales to large scenes, there is the additional pos-
sibility of adding mechanisms for streaming subset of points
(from GPU to CPU) especially once they are significantly
far away from the current pose. This would help increase
performance and clearly the point-based data would be low
overhead in terms of CPU-GPU bandwidth. Another issue is
sensor drift, which we do not currently tackle, instead focus-
ing on the data representation. Drift in larger environments
can become an issue and remains an interesting direction
for future work. Here again the point-based representation
might be more amenable to correction after loop closure
detection, rather than resampling a dense voxel grid.

Acknowledgements

This research has partly been funded by the German Re-
search Foundation (DFG), grant GRK-1564 Imaging New
Modalities, and by the FP7 EU collaborative project BEAM-
ING (248620). We thank Jens Orthmann for his work on the
GPU framework osgCompute.

References
[1] P. Besl and N. McKay. A method for registration of 3-

D shapes. IEEE Trans. Pattern Anal. and Mach. Intell.,
14(2):239–256, 1992. 1

[2] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In Proc. Comp. Graph.
& Interact. Techn., pages 303–312, 1996. 1, 2, 4, 7

[3] D. Gallup, M. Pollefeys, and J.-M. Frahm. 3d reconstruction
using an n-layer heightmap. In Pattern Recognition, pages
1–10. Springer, 2010. 2

[4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D
mapping: Using Kinect-style depth cameras for dense 3D
modeling of indoor environments. Int. J. Robotics Research,
31:647–663, Apr. 2012. 2

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
Computer Graphics (Proc. SIGGRAPH), 26(2), 1992. 1

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon. KinectFusion: real-time 3D reconstruction
and interaction using a moving depth camera. In Proc. ACM
Symp. User Interface Softw. & Tech., pages 559–568, 2011.
1, 2, 5, 6

[7] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. In Proc. EG Symp. Geom. Proc., 2006. 1

[8] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-flight
cameras in computer graphics. Computer Graphics Forum,
29(1):141–159, 2010. 7

[9] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
et al. The digital michelangelo project: 3D scanning of large
statues. In Proc. Comp. Graph & Interact. Techn., pages
131–144, 2000. 1

[10] W. Lorensen and H. Cline. Marching cubes: A high resolu-
tion 3D surface construction algorithm. Computer Graphics,
21(4):163–169, 1987. 1

[11] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon.
KinectFusion: Real-time dense surface mapping and tracking.
In Proc. IEEE Int. Symp. Mixed and Augm. Reality, pages
127–136, 2011. 1, 3, 4

[12] R. Newcombe, S. Lovegrove, and A. Davison. DTAM: Dense
tracking and mapping in real-time. In Proc. IEEE Int. Conf.
Comp. Vision, pages 2320–2327, 2011. 1

[13] C. Nguyen, S. Izadi, and D. Lovell. Modeling Kinect sen-
sor noise for improved 3D reconstruction and tracking. In
Proc. Int. Conf. 3D Imaging, Modeling, Processing, Vis. &
Transmission, pages 524–530, 2012. 4, 6

[14] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan.
Interactive ray tracing for isosurface rendering. In Proc. IEEE
Vis., pages 233–238. IEEE, 1998. 1

[15] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross. Surfels:
Surface elements as rendering primitives. In Proc. Conf.
Comp. Graphics & Interact. Techn., pages 335–342, 2000. 2

[16] M. Pollefeys, D. Nistér, J. Frahm, A. Akbarzadeh, P. Mordo-
hai, B. Clipp, C. Engels, D. Gallup, S. Kim, P. Merrell, et al.
Detailed real-time urban 3D reconstruction from video. Int. J.
Comp. Vision, 78(2):143–167, 2008. 1

[17] H. Roth and M. Vona. Moving volume KinectFusion. In
British Machine Vision Conf., 2012. 1

[18] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D
model acquisition. ACM Trans. Graph. (Proc. SIGGRAPH),
21(3):438–446, 2002. 2

[19] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo reconstruc-
tion algorithms. In Proc. IEEE Conf. Comp. Vision & Pat.
Rec., volume 1, pages 519–528. IEEE, 2006. 1

[20] J. Stückler and S. Behnke. Integrating depth and color cues for
dense multi-resolution scene mapping using RGB-D cameras.
In Proc. IEEE Int. Conf. Multisensor Fusion & Information
Integration, pages 162–167, 2012. 2

[21] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Proc. Int. Conf. Computer Vision, pages
839–846, 1998. 3

[22] T. Weise, T. Wismer, B. Leibe, and L. Van Gool. In-hand
scanning with online loop closure. In Proc. IEEE Int. Conf.
Computer Vision Workshops, pages 1630–1637, 2009. 2, 3

[23] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard,
and J. McDonald. Kintinuous: Spatially extended KinectFu-
sion. Technical report, CSAIL, MIT, 2012. 1

[24] C. Yang and G. Medioni. Object modelling by registration
of multiple range images. Image and Vision Computing,
10(3):145–155, 1992. 1

[25] C. Zach. Fast and high quality fusion of depth maps. In
Proc. Int. Symp. on 3D Data Processing, Visualization and
Transmission (3DPVT), volume 1, 2008. 1

[26] M. Zeng, F. Zhao, J. Zheng, and X. Liu. Octree-based fusion
for realtime 3D reconstruction. Graph. Models, 75(3):126 –
136, 2013. 1

[27] M. Zwicker, H. Pfister., J. V. Baar, and M. Gross. Surface
splatting. In Computer Graphics (Proc. SIGGRAPH), pages
371–378, 2001. 4


