
Real-Time Motion Artifact Compensation for
PMD-ToF Images

Thomas Hoegg1, Damien Lefloch2, and Andreas Kolb2

1 Christ-Elektronik GmbH, Alpenstr. 34, 87700 Memmingen, Germany
thoegg@christ-elektronik.de

2 University of Siegen, Hoelderlinstr. 3, 57076 Siegen, Germany
damien.lefloch@uni-siegen.de,andreas.kolb@uni-siegen.de

Abstract. Time-of-Flight (ToF) cameras gained a lot of scientific at-
tention and became a vivid field of research in the last years. A still re-
maining problem of ToF cameras are motion artifacts in dynamic scenes.
This paper presents a new preprocessing method for a fast motion ar-
tifact compensation. We introduce a flow like algorithm that supports
motion estimation, search field reduction and motion field optimization.
The main focus lies on real-time processing capabilities. The approach
is extensively tested and compared against other motion compensation
techniques. For the evaluation, we use quantitative (ground-truth data,
statistic error comparison) and qualitative (real environments, visual
comparison) test methods. We show, that our proposed algorithm runs
in real-time within a GPU based processing hardware (using NVIDIA
Cuda) and corrects motion artifacts in a reliable way.

Keywords: PMD, ToF, Motion Artifacts

1 Introduction

Time-of-Flight (ToF) sensors as the PMD camera [1] offer an elegant way to
measure depth data. They become more and more important for the computer
vision and graphics domain and also for industrial applications [2]. Having ad-
vantages such as high performance and no mechanical overhead compared to
e.g. laser scanners, they also posses many problems, especially in accuracy and
noise behavior. Most of these errors can be corrected well by applying good cal-
ibration models [3] and pre-filtering (e.g. low-pass filtering). However, artifacts
arising from dynamic scenes are still not resolved satisfactorily. Moving objects
in scenes result in a blur effect (motion artifacts) in acquired depth images. A
fast movement leads to strong artifacts, related to the sensor’s working principle
which is based on the sequential acquisition of four so-called phase images in
order to generate a depth map (see also Sec. 3). Artifacts occur in areas where
corresponding phase image values do not align to each other, resulting in a in-
correct distance calculation.

In this paper we propose a new algorithm to perform a fast real-time motion

2 Thomas Hoegg, Damien Lefloch, and Andreas Kolb

compensation with high frame rates (above 50 FPS). We focus on high flexibility
to allow the algorithm to be either computed parallelized on a GPU using CUDA
[4] or to simply port it to small devices like an FPGA preprocessing platform.
To fulfill these requirements, a linear movement with constant motion between
the four consecutive phase images is assumed. Hence, the algorithm still allows
an arbitrary degree of freedom assuming this linear behavior for each individ-
ual pixel (see Sec. 5). Invalid pixels are replaced by corresponding values of the
spatial neighborhood. This leads to simpler and faster processing compared to
standard methods shown in Sec. 2. For the evaluation, a PMD CamCube 3.0
with a resolution of 200× 200 pixel is used. The big advantages of the proposed
method are the possibility of an automatic motion detection, a search direc-
tion restriction, the repeatability of results in different applications and also the
system performance.

The remainder of this paper is organized as follows. Sec. 2 discusses the
related work. In Sec. 3 we describe the working principle of PMD cameras. Sec.
4 introduces our proposed algorithm for the motion compensation. In Sec. 5 we
show our results. Sec. 6 concludes this paper.

2 Related Work

In the last years, several methods have been proposed to detect and compensate
motion artifacts.

Hussmann et al. [5] introduce a motion compensation for linear object motion
on a conveyor belt. Areas of motion artifacts are identified using phase image
differences. These areas are binarized for each individual difference image using
a threshold. The length of motion is determined by processing each line of the
binary images and counting the lines with white pixels. Once knowing the length,
every phase image is moved accordingly before the distances are calculated. The
algorithm is implemented exemplary on an FPGA platform, but it is restricted
to a linear motion in a range between 90 − 100cm due to the small object size
and the camera field of view.

Schmidt [6] proposes a method handling motion artifacts as disturbances in the
raw data. Motion artifacts are calculated for each phase image using a temporal
derivative. High temporal derivatives of the raw data are then replaced by pre-
viously valid values. An advantage compared to Hussmann et al. is the arbitrary
degree of freedom. Lee et al. [7] propose a similar approach where they detect
motion artifacts by temporal-spatial coherence of neighboring pixels directly on
the hardware level.

Another method was proposed by Lindner et al. [8]. This method computes
a dense optical flow to compensate spatial shifts between subsequent phase im-
ages (three flow calculations). Lefloch et al. [9] proposed a method improving
this approach. Necessary computation steps can be reduced to two flow calcu-

Real-Time Motion Artifact Compensation for PMD-ToF Images 3

lations. The missing step is replaced by a polynomial approximation. One big
disadvantage is the system performance. The optical flow computation is a very
time consuming task and thus is a heavy burden for real-time processing, if fur-
ther pocessing tasks need to be performed.

Our proposed method uses particular parts from Lindner and Lefloch [8, 9] (flow
field) and Hussmann [5] (binarization of the motion area). The algorithm re-
stricts the motion to blurred areas only and optimizes the flow field detection.

3 The Time-of-Flight Principle

The following section gives a brief introduction to the functionality of ToF cam-
eras serving as a basis for the method proposed in this paper.

An intensity modulated, incoherent infrared (IR) light is emitted with a
modulation frequency f using the cameras’ illumination units to determine the
phase shift between outgoing and incoming optical signals. Each camera pixel
correlates the incoming signal s(t) with the reference signal r(t) to estimate the
correlation function. This process is repeated four times for every pixel with
different internal phase shift τi = i ·π in order to sample the correlation function
between s and r.

The PMD camera for instance is a two-tap sensor. It allows the acquistion
of two corresponding values for the same pixel at the same time, represented in
the camera as two phases PAi

, PBi
. In theory, if there is no motion and other

influences, the phases are complementary, i.e. measuring phase values at two
positions with 180° difference: PBi

= PA(i+2) mod 4
. Internally, the phase image is

represented by the difference Pi = PAi−PBi in order to compensate for hardware
inaccuracies. Using the four phase images Pi, the phase shift φ, the amplitude
A and the intensity I can be calculated:

φ = arctan 2(P0 − P2, P3 − P1) (1)

I =
P0 + P1 + P2 + P3

4
(2)

A =
1

2
·
√

(P3 − P1)
2

+ (P0 − P2)
2
. (3)

The resulting distance D is then received using the angular modulation fre-
quency ω = 2πf and the speed of light c ≈ 3 · 108ms−1:

D =
c

2ω
φ. (4)

4 A Method for Fast Linear Motion Compensation

In this section we start with an analysis of the origin of motion artifacts and
continue with a detailed description of our proposed method.

4 Thomas Hoegg, Damien Lefloch, and Andreas Kolb

4.1 Problem Analysis

ToF-cameras as the PMD camera have the advantage to be able to acquire
full distance-/depth-images of the whole scene at a time. This is done using a
sequence of four phase images, as described in Sec. 3 and shown in Fig. 1.

time

Acquisition
P0

Readout
P0

Acquisition
P1

Readout
P1

Acquisition
P2

Readout
P2

Acquisition
P3

Readout
P3

Fig. 1: Schematic view of the acquisition process of a PMD frame using four phase
images.

One full phase acquisition is split in two parts: acquisition and readout. The
acquisition time is equal to the integration time set, the readout time of actual
PMD cameras is stated as about 3.5ms. Ideally all four phase images would
simultaneously be recorded. In reality the acquisition is sequentially done (see
Fig. 1). Motion artifacts typically arise in areas of unmatching raw phase values
due to motion (see. Fig. 2). It mainly occurs at object boundaries and in regions
of inhomogeneous reflection. This effect becomes more extensive the faster an
object moves, the closer the object is to the camera and the higher the scene is
exposed (high integration times) [8].

Fig. 2 shows the default demodulation of a car (left images), moving from
right to the left and of a moving hand (right images). In both scenes, the blurred
areas are marked red. It can be seen that especially these areas contain many
motion artifacts.

Blurred areas in depth maps lead to incorrect distance computations. The
goal of motion compensation approaches is the elimination of these areas to
minimize errors. The motion during a single acquisition is not considered here
and is nearly negligible for small integration times (< 1ms).

4.2 The Motion Compensation Approach

The proposed method works on a per pixel basis allowing arbitrary motion direc-
tions. It is divided into several steps, starting with a phase normalization. The
normalization is done to compensate the sensor’s pixel gains and to equalize
the image illumination. This is necessary due to the block-matching like work-
ing principle of the approach and to obtain comparable raw values. In a second
step the area of motion is estimated to improve the processing time. The mo-
tion direction is then determined with a correspondence search in the spatial
neighborhood. Once knowing this kind of flow field, the raw values can be cor-
rected. The processing pipeline can be seen in Fig. 3 and will be explained in
the following sections.

Real-Time Motion Artifact Compensation for PMD-ToF Images 5

Fig. 2: Top: Demodulation of the car’s phase image sequence and a corresponding
closeup. Bottom: A moving hand scene and a corresponding closeup. Left: Motion
areas are marked red. Right: The closeups of the red marked motion areas.

Raw
Images

Normalization

Motion
Detection

Flow Field
Estimation

Raw Value

Correction

Depth
Image

Fig. 3: The motion detection and processing pipeline used for our algorithm.

Phase Normalization According to the behavior and design of PMD cameras,
there are several aspects for the pixel correspondence search, which have to be
taken care of. One point is the radial light attenuation. Images become darker
from the center to the border. Another aspect is the difference in pixel gains,
which has to be individually corrected for each sensor and every pixel.

To compensate these two problems, a pixel adjustment is performed using
the method proposed by Lindner et al. [8] by applying a pixel-wise intensity
correction function

fPA
(PAi) = P̃Ai , fPB

(PBi) = P̃Bi with i = 0 . . . 3 (5)

to minimize
3∑

i=0

(P̃Ai
+ P̃Bi

) = href. (6)

6 Thomas Hoegg, Damien Lefloch, and Andreas Kolb

The brightest pixel in a homogeneous surface is taken and used as refer-
ence intensity, the fitting functions are assumed to be logarithmic as fX(Xi) =
a
√
Xi + b+ cXi + d.
Applying these corrections improve the search as shown by Lindner et al.

Motion Detection Since the motion estimation is a computation intensive
task, an important preprocessing step is to detect areas of apparent motions
first. Motion can be detected using the changes in the total per-pixel intensity
for the subsequent phase images, i.e.

P+
i = PAi + PBi (7)

M =

3∑
i=1

∣∣P+
i − P

+
0

∣∣ (8)

In a next step, the estimated motion image M is binarized

B = M > θ (9)

where B is the binary image and θ a threshold value that is determined
experimentally. In our experiments we found that for θ = 650 (about 1% of the
maximum of PAi/Bi

= 65535) we get reliable results. Fig. 4 shows the motion
image and its corresponding binary image. White areas (ones) on the right side
indicate unmatching raw values.

Fig. 4: The moving hand from Fig. 2 with extracted motion artifacts. Left: The motion
image M calculated using Eq. 8. Right: The binarized image B thresholded using Eq.
9.

Motion Direction Estimation Inspired by the idea of the optical flow mo-
tion estimation, we propose a simpler way to determine a 2D vector displacement
map (U, V) without subpixel precision. Each pixel value represents a unique dis-

placement vector (u, v)
T

.

Our approach assumes a linear motion between all raw phase images with a

Real-Time Motion Artifact Compensation for PMD-ToF Images 7

constant velocity (see Sec. 5). A pixel-wise motion displacement is estimated for
all detected pixels in B. Therefore a motion window around every invalid pixel
is defined, which limits the detectable motion around these pixels. The win-
dow is assumed to be squared with an odd size between 3 and 11 pixels (Motion
Window Size, MWS). Vectors from the center (the invalid pixel) to all neighbors
are calculated and scaled according to the phase image index. Let (dx, dy) be
a single delta for a possible pixel correspondence shift between adjacent phase
images, then the respective shifted phase values for the i-th phase image are
given as:

Pshifted,i(x, y) = Pi(x+ i · dx, y + i · dy), i ∈ {0, 1, 2, 3} (10)

Pi and Pshifted,i represent the particular phase image with index i. dx and
dy are the applied deltas from the the center (see also Fig. 6) with a maximum
value of:

dxmax = dymax = (MWS − 1)/2 (11)

and an odd Motion Window Size (MWS). The maximum euclidean pixel
distance l between two corresponding points of phase image P0 and P3 is given
as:

l = 3 ·
∣∣∣∣∣∣ # »

(dxmax, dymax)
∣∣∣∣∣∣ (12)

In compliance with Eq. 12 and some knowledge about the expected motion
in a scene, the motion window size can be preset to optimize the system per-
formance. In our examples we set MWS = 5, yielding reliable results in most
of the situations (see Sec. 5). Fig. 5 shows, how search vectors are defined and
introduces the coordinate system exemplarily for a 5× 5 motion window.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

x

dx

dy

y

Fig. 5: Left: The coordinate system and an example offset dx = dy = 2. Right: The
grid cells are numbered in a row-wise order. Index ’13’ indicates the start position. Five
sample vectors are presented here.

For the estimation of the best corresponding flow, the Sum of Squared Dif-
ferences (ssd) for all possible flow vectors within the defined motion window is
calculated:

8 Thomas Hoegg, Damien Lefloch, and Andreas Kolb

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 … …

16 17 18 19 20

21 22 23 24 25

P1 P2 P3 P4

dx 2dx 3dx
dy 2dy 3dy

dx=1
dy=0

Fig. 6: An example flow for a shift dx = 1 and dy = 0. This leads to a maximum shift
between the four phase images of 3 pixels.

ssdindex(x, y, dx, dy) =

3∑
1

(P0(x, y)− Pshifted,i(x, y, dx, dy))2 (13)

Accordingly, the best correspondence value has the minimal deviation from
the first phase image. So the final flow vector for the currently processed pixel
can be expressed as:

(u, v)T = argmin (ssd(x, y, dx, dy)) (14)

The number of possible vectors MWS2 is leading to a time complexity T (n) =
O(n2). A quadratic complexity allows only small motion window sizes (about
11 × 11) to perform the algorithm in real-time. To overcome this problem, the
search direction can be restricted to an initial or mean direction from a previous
frame.

4.3 Search Space Reduction

An additional performance optimization can be achieved using a search space
reduction as can be seen in Fig. 7. Therefore the mean direction angle of a
previous frame is used as initial guess for the current motion. The direction
angle ϕ(u,v)T for one pixel is calculated between the positive x-axis −→x and the

corresponding flow vector
−−−−→
f(u, v). The mean motion direction angle ϕ is defined

as average of all estimated flow vector direction angles. Assuming a small motion
between two consecutive frames, the amount of change of the mean direction
angle is small. Now using this assumption, all pixel (x’, y’) in the search window
whose position vector has an angle in the range of ϕ ± ρ/2 (0° ≤ ρ ≤ 359°)
are taken into consideration for the motion estimation. The raw phase value
correction is then applied to the reduced flow field as described in Sec. 4.5.

All possible flow direction angles in a motion window can be precalculated.
So it is also easy to port this to small platforms as e.g. an FPGA by using
lookup-tables.

Real-Time Motion Artifact Compensation for PMD-ToF Images 9

x

y

ρ = 180°

x

y

ρ = 180°

mean direction vector/angle

ϕ = 115° ρ/2
ρ/2

ϕ = 115°

Fig. 7: Left: The mean motion vector (115° in this example) calculated in a previous
frame (red arrow) and an exemplary search space reduction to 180°. Right: Valid motion
vectors resulting out of the reduction are marked green.

4.4 Flow Field Optimization

In order to improve the robustness of the approach, a possible optimization is
optionally applied taking the spatial neighborhood into account. A median filter
is used to filter outliers. Therfore all motion vectors in a neighborhood with size
MWS are considered. Median filtering is then performed using the direction
angle as defined in Sec. 4.3. The vector length is kept.

4.5 Raw Phase Value Correction

Once the flow field (U, V) is determined, it can be applied to the raw phase values
PA0−3 and PB0−3 according to Eq. 10. Each vector of the flow field is applied
to its corresponding raw value. After the data correction has been applied, the
depth values can be reconstructed according two the principle described in Sec.
3. The results and evaluation can be seen in Sec. 5.

5 Results

The following subsections give detailed information about the motion compen-
sation results obtained with our proposed method. To perform a comprehensive
analysis, the evaluation is split in two parts. In the first part, a quantitative
evaluation is done, to allow the comparison of results against ground-truth data.
Using artificial scenes gives reproducable and reliable results. In the second part,
we do a qualitative evaluation in real scenes. Having the disadvantage that gen-
erally no ground-truth models are available, a visual evaluation makes it possible
to see if the correction could successfully be applied.

5.1 Quantitative Results

Our method has been tested in a variety of scenes of different complexities (sim-
ulated and real environments). A robustness and peformance evaluation can be
done using simulated data (see Table 2 and Table 3). Similar to Lefloch et al.

10 Thomas Hoegg, Damien Lefloch, and Andreas Kolb

[9] we use different data sets generated with a simulator [10]. The statistic eval-
uations are done with the tool CloudCompare 3. The first data set is a buddha
figure, the second is a dragon. Both figures are used as input for the simulator.
An artificial, planar wall is placed in a distance of 4 meters. In front of this
wall, in a distance of about 3 meters, the figures are placed. This setup provides
reliable ground-truth data. To obtain motion data, we acquire several different
images at different camera positions. The camera is transformed between each
individual phase acquisition. For the buddha, we use a simple lateral camera
translation of 1cm (about 2m/s motion speed). In the dragon figure setup, the
camera is rotated 1 degree (about 200deg/s angular velocity) around the z-axis
(line of sight).

3D model Distance without motion Distance with motion

Fig. 8: Two different data sets (buddha (top) and dragon (bottom)) that have been
used for the robustness evaluation of our approach; Left: The ground-truth 3D model.
Center: The cartesian distance image without any motion. Right: The cartesian dis-
tance image with motion.

Using the ground-truth of Fig. 8, we can easily generate comparable results
between the different motion compensation approaches (see also Fig. 9).

3 http://www.danielgm.net/cc/

Real-Time Motion Artifact Compensation for PMD-ToF Images 11

Proposed method Lindner et al. Lefloch et al.

Fig. 9: The results of the three evaluated methods. As can be seen, all the methods
give good results visually comparing them to the ground-truth distance with no motion
shown in Fig. 8.

Scenes Distance errors from Ground-truth (cm)
Static (no motion) Dynamic (with motion)
Mean Sigma Mean Sigma

Buddha 0.64 3.12 5.96 9.32

Dragon 1.25 4.62 7.75 14.37

Table 1: The deviation of the ground-truth depth data (flying pixels included) of the
buddha and dragon scene from the underlying meshs. It shows the mean distance error
and the deviation for the static and the dynamic scene.

Table 1 shows a statistic evaluation of the buddha and dragon scene without
motion compensation; here, static background pixels are discarded. The dynamic
scene is created as previously described.

For further evaluation, several different setups are created to verify the qual-
ity of the proposed method. The first test shows the behavior of the algorithm
with different settings for the Motion Window Size (MWS), neighborhood filter-
ing (NH), motion area estimation (θ) and also search space restriction (ρ) (see
Sec. 4.2). Table 2 and Table 3 contain the test results of the different setups and
show the detailed behaviour of the proposed algorithm using different parameter
sets. Especially the remaining depth error compared to the ground-truth data
and the system performance is highlighted. It can be seen that as expected, the

12 Thomas Hoegg, Damien Lefloch, and Andreas Kolb

best results are given without any limitation and restricition of the search space
(θ = 0, ρ = 0). The mean error of the buddha motion scene is reduced from
5.96cm (±9.32cm) to 1.14cm (±3.02cm), the dragon scene is corrected from a
mean error of 7.75cm (±14.37cm) to 2.07cm (±5.65cm). Furhtermore it can be
seen that with an increasing θ the correction performance gets better, but the
quality decreases. Another fact that gets visible is, that using the neighborhood
flow smoothing also improves the mean error, but with the disadvantage of losing
performance: With the same settings and neighborhood filtering we can correct
the buddha scene in 16.13ms, without neighborhood filtering it takes 11.57ms
only. A similar behavior can be seen for the dragon scene in Table 3. In addi-
tion, restricting the algorithm to a maximum direction deviation also improves
the correction quality (mean error) and the system performance. This can be
achieved by the rejection of a large number of search vectors in the motion win-
dow. We reject up to 36% of the possible directions (MWS = 7, ρ = 90°, 1000000
direction search vectors, rejected directions between 110770 and 716877) in the
buddha scene and up to 30% (MWS = 7, ρ = 90°, 1000000 direction search vec-
tors, rejected directions between 118916 and 583470) in the dragon scene. Please
note that the execution time is an average value of 100 measurements. Furthe-
more it can be seen that the mean motion direction ϕ most closely approximates
the expected linear translation of the buddha scene of 180°.

Additionally we compare our algorithm against the methods proposed by [8]
and [9]. Our approach reduces the mean error of the buddha scene to 1.14cm
(±3.02cm), compared to Lindner 1.13cm (±4.39cm) and Lefloch 1.46cm (±4.40cm).
For the dragon scene, the remaining mean error with our method is 2.07cm
(±5.65cm), for Lindner 2.26cm (±7.57cm) and for Lefloch 3.14cm (±8.00cm).
The results between the three compared methods are nearly equal, but our
method can score with the execution time, which is about half the time of the
method from Lefloch et al. and an eight of Lindner et al.

The result of our tested setups is a good correction compared to the input
mean error that can be seen in Table 1. Furthermore in comparison with Lindner
and Lefloch, our method gives slightly better (dragon scene) or nearly equal
(buddha scene) results and is also suitable for real-time applications with a
framerate of 50–100 FPS allowing additional data processing as requested. Note:
Compared to the evaluation of Lefloch et al. [9], we use a smaller clamping
distance (3.85m) to remove the wall, explaining the slightly different mean and
sigma values. In our opinion a good default parameter set is a threshold θ = 650
and MWS = 5. Another helpful setting is a direction restriction to the mean
motion direction. The default settings and the search area restriction significantly
optimize the system performance and the motion compensation quality. Our tests
were executed on an Intel Core i7-3770K CPU @ 3.50 GHz and an NVIDIA
GeForce GTX 680, 2GB graphics card.

5.2 Qualitative Results

This part of the evaluation shows the behavior of real environments and ap-
plications. Two different setups are built. Unfortunately, there are no ground-

Real-Time Motion Artifact Compensation for PMD-ToF Images 13

Buddha Scene Distance errors from Ground-truth corrected
MWS NH θ ρ (°) Mean (cm) Sigma (cm) ϕ (°) Rejected Directions � Time (ms)

5 - 0 - 1.15 3.10 - 0 12.58

5 - 650 - 1.70 3.54 - 0 11.57

5 - 3276 - 3.49 4.70 - 0 10.59

5 - 5243 - 4.22 5.18 - 0 10.13

5 x 650 - 1.38 3.05 - 0 16.13

5 - 650 90 1.34 3.33 206.36 118916 9.79

5 x 650 90 1.46 3.24 223.98 110770 13.18

5 - 650 180 1.34 3.38 179.21 212408 11.08

5 x 650 180 1.27 3.04 190.33 212408 13.49

7 - 0 - 1.14 3.02 - 0 25.04

7 - 650 - 1.16 3.08 - 0 23.54

7 x 650 - 1.34 3.03 - 0 31.86

7 - 650 90 1.35 3.35 174.34 716877 12.15

7 x 650 90 1.35 3.13 178.90 716877 21.16

7 - 650 180 1.35 3.37 179.74 477918 15.18

7 x 650 180 1.37 3.04 187.10 477918 23.53

Method Lindner et al.

- - - - 1.13 4.39 - - 71.87

Method Lefloch et al.

- - - - 1.46 4.40 - - 25.60

Table 2: The statistic evaluation of the buddha scene and the behavior of the mean
error in relation to different parameters. Statistics are shown for different motion win-
dows sizes, neighborhood filtering (NH) on(x) and off(-), binarization thresholds θ and
a search space restriction ρ.

truth values for these real world data sets, therefore they are limited to a
visual comparison. The first scene shows a moving hand as can be seen in
Fig. 10. The hand is moved very fast from one side to the other. The fig-
ure shows how the blurred images are corrected using our proposed method.
Furthermore the images also show the motion area and direction restriction
(MWS = 5, θ = 650, angle = 90°). It can be seen that the blur is fully cor-
rected.

The second evaluated scene contains a car moving lateral in front of the
camera. Motion occurs mainly on edges, the mirror and the wheels. The visual
determined movement direction is about 270°. The algorithm is parameterized
with MWS = 5, θ = 650, angle = 90°. Area, direction and also the correction is
successfully applied and leads to the expected results as can be seen in Fig. 11.

6 Conclusion

In this paper we presented a new method for a fast motion artifact compensa-
tion for Time-of-Flight cameras. The approach is based on several assumptions

14 Thomas Hoegg, Damien Lefloch, and Andreas Kolb

Dragon Scene Distance errors from Ground-truth corrected
MWS NH θ ρ (°) Mean (cm) Sigma (cm) ϕ (°) Rejected Directions � Time (ms)

5 - 0 - 2.08 5.70 - 0 12.09

5 - 650 - 2.09 5.71 - 0 11.97

5 - 3276 - 2.43 6.04 - 0 11.57

5 - 5243 - 2.62 6.01 - 0 10.89

5 x 650 - 2.22 5.51 - 0 14.31

5 - 650 90 2.12 5.49 186.68 259320 9.40

5 x 650 90 2.37 5.75 206.36 118916 11.89

5 - 650 180 2.16 5.68 182.36 172880 9.83

5 x 650 180 2.33 5.70 198.20 131326 13.13

7 - 0 - 2.07 5.65 - 0 21.44

7 - 650 - 2.07 5.65 - 0 20.55

7 x 650 - 2.35 5.48 - 0 26.45

7 - 650 90 2.44 5.63 210.65 176064 11.30

7 x 650 90 2.17 5.66 184.70 583470 17.61

7 - 650 180 2.18 5.77 184.02 388980 14.28

7 x 650 180 2.42 5.64 201.35 206714 20.67

Method Lindner et al.

- - - - 2.26 7.57 - - 80.76

Method Lefloch et al.

- - - - 3.14 8.00 - - 24.07

Table 3: The statistic evaluation of the dragon scene and the behavior of the mean error
in relation to different parameters. Statistics are shown for different motion windows
sizes, neighborhood filtering (NH) on(x) and off(-), binarization thresholds θ and a
search space restriction ρ.

such as linear motion between the four consecutive phase images of the PMD
camera. Our algorithm uses a thresholding and binarization method to restrict
the artifact correction area to spaces where in fact motion occurs. Furthermore
we propose an approach to find pixel correspondences in a local neighborhood
(motion field estimation), a local search area minimization by tracking the mean
motion direction of a previous frame and an optional motion field smoothing.
We show that the algorithm gives good results for simulated data (linear and
non linear motion) and also for real data. Furthermore we show that we get
comparable results in the mean value correction (compared to Lindner et al. [8]
and Lefloch et al. [9]) and the algorithm can work in real-time (execution time
about 10 ms and a frame rate of up to 100 FPS).

The proposed method still has a high potential to be optimized so that it also
supports phase image motion correction. Furhthermore the threshold θ can be
automatically adapted via statistics of the observed scene. The algorithm is also
designed in a way that allows for easy porting to smaller hardware as an FPGA
(no subpixel flow, possibility of lookup-tables for the search area reduction and
parallelization).

Real-Time Motion Artifact Compensation for PMD-ToF Images 15

Fig. 10: Hand scene: the left column contains images with motion artifacts, the middle
column contains the corresponding motion compensated images using our proposed
method and the right column contains the related flow images (red: horizontal motion,
green: vertical motion). The mean estimated motion direction for the top row is � =
125.08°, for the bottom row � = 91.91°.

References

1. pmdtechnologies GmbH: www.pmdtec.com (May 2013)
2. Prusak, A., Melnychuk, O., Roth, H., Schiller, I.: Pose estimation and map building

with a time-of-flight-camera for robot navigation. Int. Journal Intell. Sys. Techn.
& App 5(3) (2008) 355–364

3. Marvin, L., Ingo, S., Andreas, K., Reinhard, K.: Time-of-flight sensor calibration
for accurate range sensing. Comput. Vis. Image Underst. 114(12) (December 2010)
1318–1328

4. NVIDIA: www.nvidia.com (May 2013)
5. Hussmann, S., Hermanski, A., Edeler, T.: Real-time motion artifact suppression

in tof camera systems. Instrumentation and Measurement, IEEE Transactions on
60(5) (2011) 1682–1690

6. Schmidt, M.: Analysis, Modeling and Dynamic Optimization of 3D Time-of-Flight
Imaging Systems. PhD thesis, IWR, Fakultät für Physik und Astronomie, Univ.
Heidelberg (2011)

7. Lee, S., Kang, B., Kim, J.D., Kim, C.Y.: Motion blur-free time-of-flight range
sensor. In: Proceedings of the SPIE Electronic Imaging. (2012)

8. Lindner, M., Kolb, A.: Compensation of motion artifacts for time-of-flight cameras.
In Kolb, A., Koch, R., eds.: Dynamic 3D Imaging. Volume 5742 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2009) 16–27

16 Thomas Hoegg, Damien Lefloch, and Andreas Kolb

Fig. 11: Car scene: The left column contains images with motion artifacts, the middle
column contains the corresponding motion compensated images using our proposed
method and the right column contains the related flow images (red: horizontal motion,
green: vertical motion). The mean estimated motion direction for the top row is � =
228.20°, for the bottom row � = 232.71°.

9. Lefloch, D., Hoegg, T., Kolb, A.: Real-time motion artifacts compensation of tof
sensors data on gpu. In: Proceedings of SPIE Volume 8738. (2013)

10. Keller, M., Kolb, A.: Real-time simulation of time-of-flight sensors. J. Simulation
Practice and Theory 17 (2009) 967–978

