
7 A Scalable Software Framework for Stateful 
Stream Data Processing on Multiple GPUs and 

Applications 

Farhoosh Alghabi, Ulrich Schipper and Andreas Kolb 

University of Siegen, 

Institute for Vision and Graphics 

Hölderlinstr. 3, 57076 Siegen, Germany 

{farhoosh.alghabi,ulrich.schipper,andreas.kolb}@uni-siegen.de 

Abstract   During the past few years the increase of computational power has 
been realized using more processors with multiple cores and specific processing 
units like Graphics Processing Units (GPUs). Also, the introduction of program-
ming languages such as CUDA and OpenCL makes it easy, even for non-graphics 
programmers, to exploit the computational power of massively parallel processors 
available in current GPUs. Although CUDA and OpenCL relieve programmers 
from considering many low-level details of parallel programming on multiple 
cores on a single GPU, the same support at a higher level of parallelization for 
multiple GPUs is still under research. In particular, fundamental issues of memory 
management and synchronization must be dealt with directly by the programmer. 
In this chapter we introduce concepts for CUDA-based frameworks which are de-
signed for stateful stream data processing for graph-like arrangements of pro-
cessing modules on two or more GPUs in a single compute node. We evaluate 
these concepts and further elaborate on the approach of our choice. Our approach 
relieves the programmer from error-prone chores of memory management and 
synchronization. The chapter presents detailed evaluation results which demon-
strate the scalability of the proposed framework. To demonstrate the usability of 
our framework, we utilize it for demanding on-line processing in the areas of crys-
tallographic structure detection and video decryption. 

Keywords: GPGPU, Software Framework, Multi-GPU, Stream Data Pro-
cessing 
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7.1 Introduction 

Although the idea of parallel processing has been around for some decades, the 
interest to this field and its applications in various scientific and engineering areas 
has grown significantly in the past few years. There are two reasons that have 
played a major role in this growth. One reason is the advancements in hardware 
industry which have enabled processor manufacturers to put more processing 
cores on a single die, thereby moving the parallel programming from expensive 
mainframes and clusters to desktop computers. This fact is verified by noticing the 
widespread use of multi-core CPUs and many-core GPUs in almost any PC 
around the world. The second reason is the introduction of languages, libraries and 
tools that ease the task of parallel programming for these processors. Particularly, 
we can mention CUDA and OpenCL which both target GPUs and unleash the 
huge computational power even to programmers not familiar with computer 
graphics. 

Both OpenCL and CUDA offer general-purpose application programmers with 
great support for parallel programming. This is accomplished by providing con-
cepts and features that easily map to real-world problems which are parallel in na-
ture, thus enabling efficient exploitation of computational power delivered by the 
numerous cores of a single GPU with minimal effort. Although these features 
work well for cases where there is only one GPU available in the compute node, 
they are not so easily extensible to the cases where multiple GPUs exist in a single 
node. Thus, it remains the task of programmer to take care of any details in order 
to provide the same degree of scalability at this new level of parallelization (multi-
GPU, single-node parallelization) as the one available across the cores on a single 
GPU. 

This chapter specifically addresses the concept and realization of a CUDA-
based framework for multi-GPU, single-node parallelization problems, where 
GPU-scalability is a major concern. The framework has been designed with easy 
use by application programmers in mind. As a consequence, transparency is an 
important property of the proposed framework, mainly with regard to memory 
management and synchronization. Actually the most important programming task 
left to the application programmer is writing CUDA kernels responsible for pro-
cessing of data as if they would run on a single-GPU node. 

We assume the data is provided as sequences of homogeneous data sets Di(tj) 
(frames at time tj), where i indicates the last processing module Mi with which the 
data has been processed. We address a specific class of stream processing [1] 
problems, which can be characterized as follows (see also Fig. 7.1): 

Module-Based Stream Processing: We assume data to be loaded to the 
framework via one or several source modules and to be processed by several pro-
cessing modules. The resulting data is exported via sink modules. 
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A module Mi can be seen as a CUDA kernel which processes stream data, i.e. 
transforming input data Di-1(tj) to output data Di(tj) that is fed into subsequent 
module(s). 

 

Fig. 7.1. Processing modules and their arrangement, including stream splits (top-middle), merges 
(top-right), intra-module feedback (bottom-left) and the optional inter-module feedback (bottom 
right) 

Graph-Based Layout: The stream data is transferred between modules, which 
can be arranged like a graph, including stream splits and stream merges. 

Stateful Processing of Data: It means that previous data or processing results 
are required for processing newly arrived data. This is realized using intra-module 
feedback; here, the processing in module Mi of frame tj also depends on the prior 
result of the same module, i.e. on Di(tj-1). 

Inter-Module Feedback (Optional): Inter-module feedback improves on the 
intra-module feedback by letting two distinct modules be connected via feedback. 

As a result, the addressed problem class is more general than standard pipeline-
processing and thus it has a wider range of applications. Stateless problems, never-
theless, can still be subject to automatic multi-GPU processing. 

In order to give an impression of how useful our framework is, we briefly dis-
cuss two applications from different domains here. One application lies within the 
scope of information security. To protect against unauthorized access to infor-
mation, various cryptographic and steganographic algorithms have been devel-
oped. Not surprisingly, videos form an important subclass of data which are re-
quired to be protected against unauthorized access. The rapid growth in size of 
videos (due to increasing resolution, colour depth, frame rate, ...), however, has 
made the task of applying complex methods computationally quite expensive. One 
scenario shows the on-line application of cryptographic and steganographic meth-
ods. 

The second application lies within the field of crystallography. One common 
practice in the community is to study the structure of crystals by examining a 
sample using x-ray imaging. Here, a crystal sample is radiated by an x-ray beam 
and the scattered radiation pattern is detected by an energy-dispersive pn-type 
charge coupled device (pnCCD) sensor. This camera generates images with 384 * 
384 pixels and 2 bytes of information per pixel at currently 400 frames per second, 
yielding an overall data rate of beyond 112 MB/s. The overall goal of these kinds 
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of experiments is to have near real-time data analysis in order to be able to directly 
detect improper adjustments of the setup or wrong experimental parameters. Fur-
thermore, in the near future, these experimental setups should be applied for con-
tinuous analysis of large sample sets. In a separate section, we show that how suc-
cessfully our framework is used to address this problem. 

The remainder of this chapter is organized as follows: Sec. 7.2 gives an over-
view of works done in the area of multi-GPU as well as stream data processing. 
Sec. 7.3 describes the parallelization concepts and implementation details for the 
framework. Sec. 7.4 presents some experimental evaluations. In sec. 7.5, as men-
tioned, two real-world applications where our framework has been utilized are 
elaborated. Finally, Sec. 7.6 concludes the chapter with a brief discussion. 

7.2 Related Work 

As stated in the introduction we focus on multi-GPU, single-node paralleliza-
tion for stream data processing. Consequently, in the following we first mention 
works mainly characterized by running on multi-GPU systems and then those 
which deal with stream data processing. 

In [2] Enmyren and Kessler propose a skeleton programming library for sys-
tems with multiple CPU cores and GPUs. This is accomplished by use of CUDA 
and OpenCL as the backends for code running on GPU and OpenMP for CPU 
code. The operations supported by their library follow MapReduce model and are 
in the form of a C++ template library. [3] proposes an approach for high-
performance scientific computing on single- and multi-GPU systems. An im-
portant feature of the prototype implemented in the paper is the separation of algo-
rithm description from mapping to the hardware which is achieved through the 
definition of a domain-specific language. The language is defined in close collabo-
ration with experts of the domain for which the framework is intended. In [4] 
Chen et al. propose a task-based queue scheme for systems with one or multiple 
GPUs. The main goal of the scheme is dynamic load balancing which is achieved 
by breaking down the computations into fine-grained tasks and then dynamically 
assigning them to GPUs. Note that in the case of single-GPU systems this reduces 
to assignment of tasks to CUDA cores available on a GPU which is reported to 
outperform the CUDA scheduler in case of unbalanced workload. Chen et al. fur-
ther develop on this work to support GPUs on different nodes in a cluster [5]. 
They also improve their scheme for dynamic load balancing on individual nodes 
with multiple GPUs. As an interesting application, Stuart et al. [6] have proposed 
a multi-GPU design for volume rendering. In their implementation, parallel vol-
ume rendering has been fit into MapReduce model and run on a cluster of nodes 
equipped with GPUs. As a rather innovative work [7] presents a performance pre-
diction model for multi-GPU systems, which gives an estimate of the expected 
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performance improvement when moving from a single-GPU to a multi-GPU sys-
tem, based on the performance results on a single-GPU system. 

In summary, all of the above-mentioned approaches either focus on a problem 
domain that does not include the problem domain addressed in this chapter, or 
they use a different hardware setup, e.g. CPU-clusters, for which the concepts can 
not be directly applied to our hardware setup. 

Considering related works mainly characterized by stream data processing, [8] 
presents a framework for processing of multiple data streams on heterogeneous 
systems where both CPUs and GPUs are used as processors. The paper proposes a 
method for assignment of streams to CPUs and GPUs such that hard real-time 
constraints of stream data processing are satisfied. Yamagiwa et al. [9] elaborate 
on their efforts for porting an already existing framework for stream data pro-
cessing on single GPU from previous GPU generations to present ones. To this 
end, they use CUDA. This, in addition to the use of OpenGL and DirectX for 
GPUs of old generations, leads to the development of a framework capable of 
running on different generations of GPUs. Teodoro et al. [10] introduce a stream 
data processing framework capable of exploiting the computational power of both 
CPUs and GPUs. A significant point with their framework is a mechanism for de-
termining on which type of processor (CPU or GPU) the processing should be 
done (provided that the code for both types of processors are given). The frame-
work uses CUDA as computational backend on GPUs. Houzet et al. [11] present a 
programming model which can be used for stream data processing on multi-GPU 
systems. The innovation of this work is its use of system design language 
SystemC which is used as a high-level language for description of the desired pro-
cessing, thereby hiding many low level details from users. Zhang and Mueller 
propose a scalable stream data processing framework which runs on GPU clusters 
and is based on CUDA [12]. It makes extensive use of template-based generic 
programming techniques in C++ to offer programmability and uses MPI for inter-
node communication. As the last work in this section, Vogelgesang et al. [13] 
have developed a GPU-based image processing framework which supports CPU 
usage as well.  Similar to [10] their framework chooses between CPU and GPU 
codes provided that both codes exist. The framework supports processing on a 
cluster of nodes and uses OpneCL as computational backend. 

All of the mentioned stream data processing approaches lack support for either 
multi-GPU or the problem domain addressed in this chapter (i.e. stateful stream 
data processing). 

7.3 The Framework 

In this section, we first describe possible parallelization concepts for the ad-
dressed problem domain (Sec. 7.3.1). The evaluation of these concepts in Sec. 
7.4.1 forms the basis for final implementation, which is described in Sec. 7.3.3. 
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Remember that our framework assumes that all or majority of processing is 
done on GPUs, thus a processing module can be safely considered as a user-
defined CUDA kernel in most cases. The processing graph is a collection of mod-
ules which describe the flowchart of processing done on data, including stream 
source and stream sink modules (see Fig. 7.1) 

7.3.1 Basic Concepts 

An important design question while developing the framework is how to dis-
tribute the computational load over several GPUs and, as a consequence, how the 
synchronization and the data management is organized. 

Since in our treatment of the framework the computational load is decomposed 
into modules, this question reduces well to that of how to assign different modules 
to GPUs. We consider two completely different approaches, i.e. 

Distributed Graph: In this first concept, the processing graph is divided into N 
sub-graphs, where N is the number of GPUs, and modules within each sub-graph 
are strictly assigned to a separate GPU. 

Multiple Graph Instantiation: In this concept, on the other hand, one instance 
of each module or more precisely one instance of the whole processing graph runs 
on each GPU. 

Tab. 7.1 summarizes their main characteristics. Note that there are two variants 
of the Distributed Graph approach (see Sec. 7.3.2). 

Table 7.1. Characteristics of the different concepts 

 In order to select one of the concepts for final implementation, we have im-
plemented preliminary versions of both concepts. These preliminary versions are 
fully functional in terms of data management, synchronization and process-

 Multi-threaded Distribut-
ed Graph 

Single-threaded Distribut-
ed Graph 

Multiple Graph Instantia-
tion 

Architecture - One Instance 

- Modules Distributed 
over GPUs 

- One CUDA Stream per 
Module 

- One Instance 

- Modules distributed 
Over GPUs 

- Two CUDA Streams per 
GPU 

- Multiple Instances 

- One Instance per GPU 

- One or More CUDA 
Stream(s) per GPU In-
stance 

Synchronization CPU-thread Synchroniza-
tion 

CUDA Stream Barrier CPU-thread Synchroniza-
tion 

Memory Transfers Source, Sink, GPU-
borders 

Source, Sink, GPU-
borders 

Source, Sink, Feedback 

Load Distribution Module Distribution Module Distribution Built-in 

Inter-module Feed-
back 

Not Supported Container Modules Main Memory 
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control. Based on the preliminary implementation, the performance of the con-
cepts has been evaluated (see Sec. 7.4.1). The essence of the evaluation is, that the 
Multiple Graph Instantiation approach outperforms the two variants of Distributed 
Graph in almost all test cases except when the number of intra-module feedbacks 
is large enough. Thus, we made the choice to fully implement the Multiple Graph 
Instantiation approach. Consequently, the technical description of the Distributed 
Graph concept is less detailed than the one for Multiple Graph Instantiation. 

7.3.2 Distributed Graph 

There are two variants of the Distributed Graph approach. The major difference 
between these two variants is the number of CPU threads used for controlling the 
modules, which strongly influences the synchronization method to be applied. In 
multi-threaded variant each module is controlled by a separate CPU thread (see 
Fig. 7.2).  The module stores its result in a small output ring-buffer.  If a module is 
idle, it polls the output buffer of the predecessor for new data to process. If this is 
the case, new data is copied to an input buffer (DeviceToDevice copy) and pro-
cessed.  If no new data is available, it yields its time slice.  If a module has a suc-
cessor, that is located on a different GPU, the output ring-buffer is mirrored to the 
host memory (DeviceToHost copy). On the other hand, if a module has a prede-
cessor that resides on a different GPU, it copies the data from main memory to its 
GPU memory (HostToDevice copy).  The modules are synchronized via the ac-
cess to the output ring-buffer. In single-threaded variant all modules are controlled 
by the same CPU thread (see Fig. 7.3), which calls all CUDA functions (kernel 
launches and memory transfers) asynchronously.  Two CUDA streams are used 
for each GPU, one for data transfer and the other for kernel calls, thus partially 
hiding data transfer time by overlapping kernel launch and memory transfer.  Be-
fore the next frame is processed, the CUDA streams are synchronized by a barrier. 

 

Fig. 7.2. Distributed Graph, Multi-threaded Variant: Each module runs in a separate CPU thread. 
The processing is synchronized via access to the ring-buffer. Data transfers across GPU borders 
are managed via the main memory. 
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This approach requires a manual decomposition of the complete processing 
graph into N sub-graphs to be distributed to the N GPUs. The load distribution is a 
direct result of this decomposition and thus a difficult task left to the user. 

 

Fig. 7.3. Distributed Graph, Single-threaded Variant: In this concept, all modules are triggered 
within a single CPU thread using asynchronous CUDA calls. Two CUDA streams for each GPU 
are used to partially hide data transfer time. A CUDA stream barrier is used to synchronize after 
each process iteration. 

7.3.3 Multiple Graph Instantiation 

At the very heart of the proposed framework lies a simple idea: processing all 
the input stream(s) data at a specific time step ti by a single GPU (see Fig. 7.4). 
Precisely speaking, for N > 1 GPUs, numbered from 0 to N - 1, the data from all 
input streams at time step t ≥ 0 is processed by GPU t mod N. This has an immedi-
ate consequence of nearly perfect load distribution over GPUs in case of data-
independent processing. 

Although the basic idea behind the proposed framework is quite simple, there 
are still a few other considerations which affect the framework design in a signifi-
cant way. The two most important considerations are synchronization and main 
memory management which are largely influenced by the stateful processing re-
quirement of the framework, i.e. the realization of the intra- and inter-module 
feedback functionalities. For the Multiple Graph Instantiation approach, feedback 
data is transferred first from the memory of one GPU to the main memory of the 
system and then from there to the memory of another GPU. This leads to two 
memory transfer operations between host and device with additional synchroniza-
tion requirements, whereas in the Distributed Graph concept this data remains on 
the same GPU. 
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Besides the two aforementioned considerations, there are still a few less im-
portant ones which are specifically taken care of to exploit useful features of 
GPUs offered by CUDA. Notably, GPU memory management and concurrent 
CUDA kernel launches and memory copies are among these. These last two points 
together with synchronization and main memory management are separately con-
sidered in the following four subsections. 

 

Fig. 7.4. Multiple Graph Instantiation: The whole processing graph is executed on each GPU 
(here, only 2 GPUs are shown).  Data transfers for inter- and intra-module feedbacks are handled 
via main memory.  The input and output buffers are swapped during stage changes to save GPU 
memory (see Sec. 7.3.3). 

7.3.3.1 Synchronization 

Considering the basic idea of the framework, there should be a mechanism 
which ensures us that the GPUs both read the inputs from sources and write the 
outputs into the sinks in correct order. In order to realize this behaviour, the 
framework launches as many CPU threads as GPUs where each CPU thread is in 
full charge of a GPU. This, in turn, lets the framework control the order of access-
es to input as well as output streams by different GPUs through the use of syn-
chronization objects defined at CPU thread level. The same mechanism is used to 
let each GPU access the processing results of input(s) at previous time step, there-
by enabling the stateful processing property of the framework. 
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7.3.3.2 Main Memory Management 

Main memory can be regarded as the major gateway of the framework for 
communication with the outside world. Actually, it is the place where inputs rep-
resented by sources are read from by GPUs and also it is the place where outputs 
represented by sinks are written into by GPUs. In addition to these two functional-
ities, the main memory also serves another important purpose: providing a place 
for exchange of data between GPUs. This latter point combined with previously-
mentioned synchronization mechanism which is used to synchronize accesses to 
common main memory areas between two GPUs, realize the stateful processing 
capability of the framework. 

7.3.3.3 GPU Memory Management 

Although a straightforward way for GPU memory management is to allocate 
memory for inputs and outputs of all modules in the processing graph, the frame-
work employs another strategy for this. The motivation for this has been better uti-
lization of precious GPU memory. To implement this strategy, the framework in-
troduces the concept of stage. A stage is defined as composed of modules whose 
inputs are produced in previous stage(s). Such a definition is a recursive one and 
the only requirement is to define the first stage. To complete our definition, the 
first stage is considered to be composed of only sources. 

Now that we have organized all the modules in the processing graph into stag-
es, GPU memory management can be described as allocation of two separate areas 
on GPU memory. From one of the GPU memory areas the inputs for all modules 
in the current stage are read and into the other the outputs of all modules of the 
current stage are written. The roles of the two GPU memory areas are swapped 
when finishing current stage and starting a new one. This way the output area of 
current stage becomes the input area of the new stage, thus ensuring the desired 
behaviour. This swap process is repeated whenever a stage is complete and a new 
one begins. Note that this GPU memory management strategy is done for each 
GPU separately and the two GPU memory areas are allocated on global memory 
of GPUs. This latter point ensures the data are persistent between two consecutive 
stages. 

7.3.3.4 Concurrent Kernel Launches and Memory Copies 

A useful concept introduced in CUDA is that of CUDA streams. An immediate 
consequence of this concept is the possibility of concurrent kernel launches as 
well as concurrent kernel execution and copies between main and GPU memories. 
With the aim of increasing performance, the framework is designed to exploit this 
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valuable feature as well. For this purpose, the framework provides the user with 
some CUDA streams on which to launch kernels. 

7.4 Experimental Evaluation 

In accordance with how the effort for development of the framework is divided 
into two main phases (see Sec. 7.3), the evaluations carried out are well catego-
rized into two major groups, i.e. those aimed at the selection of a concept for final 
implementation (Sec. 7.4.1) and those to depict the scalability of the final imple-
mentation (Sec. 7.4.2). Note that the system used for running all the experiments 
in this chapter is equipped with 4 Tesla C2050 GPUs each having 448 CUDA 
cores and connected via a separate PCI-Express 2.0 x16 interface. The system also 
has two Intel Xeon E5630 2.53 GHz Quad-Core CPUs with 24GB of RAM. Final-
ly the system runs Windows Server 2008 R2 as the operating system. 

7.4.1 Comparison of Preliminary Implementations 

The evaluation of the preliminary implementations is based on three different 
processing graphs. The stream data for all experiments consists of 10.000 data 
frames of 384 * 384 2-byte data elements, adding up to some 2.75 GB. Further-
more, we vary the amount of computation performed in each module. Therefore, 
we use two different CUDA kernels, one light kernel, inducing relatively little 
computational effort, and one heavy kernel with high computational costs. Then 
the average time measurement is reported. As the last point, in Distributed Graph 
experiments the distribution of modules among GPUs is done manually in order to 
get the best load balance for each processing graph. 

The first processing graph examined is a serial processing graph, in which the 
processing modules are connected sequentially and their number varies from 1 to 
10. Fig. 7.5 shows the result for this experiment. This experiment is ideal for par-
allelization, since the least amount of data transfer is required, i.e. no feedback, 
splitting or merging. The Multiple Graph Instantiation completely outperforms the 
two variants of Distributed Graph in both light and heavy kernels. There is, how-
ever, an interesting observation: for the heavy kernel, the Multiple Graph Instanti-
ation implementation performs almost linear, whereas this is almost constant in 
light kernel version. This effect is due to the fact that the computation done in 
heavy kernel is large enough to constitute most of the measured time whereas in 
light kernel version other operations such as host (CPU) to device (GPU) and de-
vice to host memory transfer times dominate the computation time in kernels, 
leading to an almost constant performance. Note that these two types of memory 
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transfer operations are performed exactly the same number of times regardless of 
the number of processing modules in the serial processing graph. 

 

Fig. 7.5. Serial processing graph experiment performed with 1-10 processing modules consisting 
of either light or heavy kernels for all three concepts 

The next experiment is conducted using a parallel processing graph, where the 
processing modules are arranged in a purely parallel fashion and their count varies 
between 1 and 10. The results of experiments are shown in Fig. 7.6. The Multiple 
Graph Instantiation concept again outperforms the two variants of Distributed 
Graph. Once again, the same effect as the one in Fig. 7.5 can be seen for light and 
heavy kernel modules used in the Multiple Graph Instantiation. This can well be 
explained by the same line of reasoning as the one stated for serial processing 
graph. 

In the last processing graph, we use a more complex arrangement consisting of 
23 processing modules (see Fig. 7.7). In this processing graph some of the pro-
cessing modules have an intra-module feedback the number of which ranges be-
tween 0 and 23. As can be seen in Fig. 7.8, the Multiple Graph Instantiation per-
forms better than multi-threaded Distributed Graph. However, for a large number 
of intra-module feedback, the single-threaded Distributed Graph outperforms the 
Multiple Graph Instantiation. This effect is a direct result from the data transfer 
required for feedback, i.e. the intra-module feedback implementation in the Multi-
ple Graph Instantiation is more expensive than its Single-threaded Distributed 
Graph counterpart (see Sec. 7.3.3). 
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Fig. 7.6. Parallel processing graph experiment performed with 1-10 modules consisting of either 
light or heavy kernels for all three concepts 

 

Fig. 7.7. Complex processing graph used in Sec. 7.4.1 
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7.4.2 Scalability and Feedback 

The Multiple Graph Instantiation approach by default supports the optional 
functionality of inter-module feedback. To be precise, the implementation does 
not make any difference between intra- and inter-module feedbacks. We conduct-
ed some experiments regarding this feature in order to evaluate the effect of feed-
backs on the scalability in terms of the number of GPUs. Therefore, we generated 
a processing graph, consisting of a linear sequence of modules with an additional 
inter-module feedback (see Fig. 7.9). For the evaluation we vary the computation-
al load of modules bridged by the feedback and the ones outside the bridged sub-
graph. 

 

Fig. 7.8. Complex processing graph experiment performed with 0-23 intra-module feedback(s) 
using either light or heavy kernels for all three concepts 

 

Fig. 7.9. Processing graph used for examining the effect of feedback on scalability (see Sec. 
7.4.2) 

The results regarding the scalability are shown in Fig. 7.10.  As expected, inter-
module feedback reduces the performance of our framework.  Naturally, bridging 
the whole graph completely, i.e. having no computational load outside the bridged 
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sub-graph, completely destroys the GPU parallelism, since the first processing 
module can process D0(tj+1) only after the last module N has generated its result 
DN(tj).  The rate of performance degradation is related to the proportion of the time 
spent within the feedback sub-graph and that spent outside the bridged sub-graph. 

 

Fig. 7.10. Scalability and feedback in terms of the proportion of the computational load inside 
and outside the feedback sub-graph 

7.5 Applications 

In this section we present two different applications which have been success-
fully addressed by our framework. The first application deals with information se-
curity whereas the second one is in the field of crystallography. 

7.5.1 Information Security using Crypto- and Steganography 

Cryptography and steganography form two major groups of methods within the 
scope of information security. While cryptography is more concerned with hiding 
the content of a message, steganographic methods try to hide the message itself. 
To better clarify the difference between the two, one can consider the case of a 
simple piece of meaningful text communicated between sender and receiver. In 
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case of cryptography, one would encrypt the meaningful text such that each letter 
is replaced by another thus leading to an unmeaningful text. In steganography, 
however, the meaningful text (referred to as cover or cover text) could be written 
in such a way that the secret message is formed from the first letter of each word. 
As can be seen in this simple case, the advantage of steganography over cryptog-
raphy is that it doesn't attract the attention of those who accidentally access the 
text, whereas the encrypted text would raise suspicion that there is a secret mes-
sage hidden in the unmeaningful text. Therefore, cryptographic methods only pro-
tect the content of a secret message while steganography deals with protection of 
both secret message and communicating parties. 

In this section our framework is exploited to deal with an application where 
both cryptographic and steganographic methods are involved. The goal is to ex-
tract a sequence of secret hidden images from an encrypted cover video. The video 
is encrypted based on method of [14]. In our implementation it is assumed that 
each video frame in the memory is divided into chunks of 8 bytes and correspond-
ing chunks in consecutive frames form a separate sequence of plaintext blocks. 
Furthermore, in each video frame a secret image is hidden using least significant 
bit which is a steganographic transform whereby secret information are written in-
to least significant bits of image pixels thus causing hard-to-perceive degradations 
in visual quality of cover image (The interested reader is referred to [15] for a sur-
vey of this and other image steganograohic methods). Based on these assumptions, 
our framework first decrypts a video frame by applying method of [14] to obtain 
the cover image and then extracts the hidden image by applying the reverse 
steganographic transform to the cover image (All processing for this experiment is 
done on GPUs). Note that in this implementation the decryption result of each 
video frame is affected by that of previous one thus requiring feedback as shown 
in Fig. 7.11. Note that H and µ are decryption parameters as defined in [14] and 
the task of two modules H image and decrypted frame extraction is to separate 
these two pieces of data which are combined at the output of frame decryption 
module and provide them on their outputs. 

 

Fig. 7.11. Processing graph used to extract hidden image sequence (video) from encrypted cover 
video 
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The experiment is done using HD Videos of size 1920 * 1080, 24 bpp as cover 
video. The result would be a video (image sequence) of size 1920 * 135, 24 bpp. 
This is because from each byte in the input video only the least significant bit is 
preserved thus reducing the size to one eighth. The timing results for 2, 3 and 4 
GPUs are shown in Fig. 7.12. Also shown in the figure are timing results for CPU 
implementation of the same algorithm using 1, 2, 3 and 4 CPU threads to provide 
the reader with a ground to compare with. Considering the typical frame rate of 
1080p HD videos which is between 24 and 60 frames per second, one can easily 
see that the 4-threaded CPU implementation can only handle frame rates near the 
lower bound of this range whereas the two-GPU implementation supports frame 
rates well beyond its upper bound. 

 

Fig. 7.12. Timing results of hidden video extraction from encrypted HD video using different 
number of CPU threads and GPUs 

7.5.2 Crystallography using a pnCCD Camera 

Considerable amounts of information about crystals are collected through ex-
amination by x-ray. There are different types of x-ray sensors which record the re-
sult of these examinations. One such sensor is an energy-dispersive CCD with fast 
read-out called pnCCD camera (see Sec. 7.1). The specifications of this camera 
were mentioned in introduction. Getting familiar with the operation of the camera, 
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however, needs some basic knowledge of the domain. When x-ray beam is scat-
tered by crystal sample, scattered x-ray photons hit the camera image plane. De-
pending on the position of incident photons onto the image plane, a number of 
pixels are illuminated thus producing non-zero pixel values. Pixels illuminated by 
a single photon are collectively called an event. Events can be consisting of 1, 2, 3 
or 4 non-zero pixels (the so-called single, double, triple and quadruple events, re-
spectively). Fig. 7.13 shows valid patterns for double, triple and quadruple events. 
However, it may happen that in an image we have invalid patterns. These patterns 
are caused by two or more photons whose event patterns interfere and make a 
cluster of events. A solution to this problem is to increase the frame rate such that 
the probability of occurrence of interfering patterns decreases. That is why, 
pnCCDs support such high frame rates as 400 frames per second. Determining 
valid events in each frame forms the basis for many other crystallographic exper-
iments which rely on analysis of events. 

 

 

Fig. 7.13. Valid double, triple and quadruple events: Red and blue pixels show the highest and 
lowest pixel values in an event, respectively. 

We have developed kernels for extraction of valid events from pnCCD frames 
[16] which is based on [17]. The whole processing can be split into two major 
steps of frame correction and valid event extraction. As Fig. 7.14 shows, first an 
offset map is subtracted pixelwise from the raw pnCCD frame. During common 
mode correction the median value for each row of the image is computed and then 
subtracted from all pixel values of the corresponding row. The processing contin-
ues by 'Zero' pixel elimination whereby all pixels whose values are less than cor-
responding pixel values in a noise map image multiplied by a constant factor are 
discarded. In gain correction the pixel values in each column are multiplied by a 
gain factor. In CTE correction for each column the pixel values are multiplied by a 
CTE factor raised to the power of the pixel's row index. Now, we have corrected 
frames which are then used to extract valid single, double, triple and quadruple 
events. Fig. 7.15 shows the performance and scalability of our framework while 
working with different number of GPUs (2 to 4) and different frame sizes (Note 
that all processing modules in the processing graph run on GPU). To better show 
the usefulness of GPUs for event extraction, we have implemented a single-
threaded CPU version of the mentioned algorithm. The CPU version processes 92 
frames of size 384 * 384 per second whereas this number is 1756 when 2 GPUs 
are used thus leaving a lot of computational power for further processing of events 
(Note that event extraction is only a first processing step in many crystallographic 
applications). 
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Fig. 7.14. Processing done on each raw pnCCD image to extract valid single, double, triple and 
quadruple events 

 

Fig. 7.15. Timing results of valid event extraction for various number of GPUs and frame sizes 

7.6 Conclusion 

In this chapter, we presented a scalable CUDA-based framework for stateful 
stream data processing on multiple GPUs in a single node. As described, the 
framework is designed to be both easy to use and flexible from the user part. The 
ease of use is achieved by transparent implementation of the framework with re-
gard to synchronization and memory management. This, however, does not limit 
the flexibility of the framework in the sense that the user still has unlimited free-
dom to define the CUDA kernels for processing modules as desired. 

Still the most important feature of the framework is scalability. For that, the 
chapter also presents a number of experiments for stateful processing of stream 
data and examines the effect of feedback in processing graphs on the scalability of 
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the framework with regard to GPUs. Furthermore, the practicality and usefulness 
of the framework for real-world tasks is demonstrated by two different application 
scenarios. 

Acknowledgments   This research was partially funded by the German Ministry for Research 
and Education (BMBF) under grant No. 05k10PSB. 

 
References 

[1] Macedonia, M.: The GPU enters computing's mainstream. IEEE Computer 36(10), 106-108 
(2003) 

[2] Enmyren, J., Kessler, C.: Skepu: A multi-backend skeleton programming library for multi-
GPU systems. In: Proc. Int. ACM Workshop High-level parallel programming and applica-
tions. pp. 5-14 (2010) 

[3] Meyer, B., Plessl, C., Forstner, J.: Transformation of scientific algorithms to parallel compu-
ting code: Single GPU and mpi multi GPU backends with subdomain support. In: Proc. 
Symp. Application Accelerators in High-Performance Computing (SAAHPC). pp. 60-63 
(2011) 

[4] Chen, L., Villa, O., Krishnamoorthy, S., Gao, G.: Dynamic load balancing on single- and 
multi-GPU systems. In: Proc. Parallel & Distributed Processing (IPDPS) (2010), dOI: 
10.1109/IPDPS.2010.5470413 

[5] Chen, L., Villa, O., Gao, G.: Exploring fine-grained task-based execution on multi-GPU sys-
tems. In: Proc. IEEE Int. Conf. on Cluster Computing. pp. 386-394 (2011) 

[6] Stuart, J.A., Chen, C.K., Ma, K.L., Owens, J.D.: Multi-GPU volume rendering using 
MapReduce. In: Proc. Int. ACM Symp. High Performance Distributed Computing. pp. 841-
848 (2010) 

[7] Schaa, D., Kaeli, D.: Exploring the multiple-GPU design space. In: Proc. Int. IEEE Symp. 
Parallel and Distributed Processing (2009) 

[8] Verner, U., Schuster, A., Silberstein, M.: Processing data streams with hard real-time con-
straints on heterogeneous systems. In: Proc. International Conference on Supercomputing. pp. 
120-129 (2011) 

[9] Yamagiwa, S., Arai, M., Wada, K.: Efficient handling of stream buffers in GPU stream-based 
computing platform. In: Proc. IEEE Pacific Rim Conference on Communications, Computers 
and Signal Processing. pp. 286-291 (2011) 

[10]Teodoro, G., Sachetto, R., Sertel, O., Gurcan, M., Meira, W., Catalyurek, U., Ferreira, R.: 
Coordinating the use of GPU and CPU for improving performance of compute intensive ap-
plications. In: Proc. Int. IEEE Conf. on Cluster (2009) 

[11]Houzet, D., Huet, S., Rahman, A.: Syscellc: A data-flow programming model on multi-GPU. 
In: Proc. Int. Conf. on Computational Science. pp. 1035-1044 (2010) 

[12]Zhang, Y., Mueller, F.: Gstream: A general-purpose data streaming framework on GPU clus-
ters. In: Proc. Int. Conf. on Parallel Processing. pp. 245-254, (2011) 

[13]Vogelgesang, M., Chilingaryan, S., dos Santos Rolo, T., Kopmann, A.: Ufo: A scalable 
GPU-based image processing framework for on-line monitoring. Proc. IEEE 14th Int. Conf. 
on High Performance Computing and Communications pp. 824-829 (2012) 

[14]Wang, X., Bao, X.: A novel block cryptosystem based on the coupled chaotic map lattice. 
Nonlinear Dynamics 72, 707-715 (2013) 

[15]Cheddad, A., Condell, J., Curran, K., Kevitt, P.M.: Digital image steganography: Survey and 
analysis of current methods. Signal Processing 90, 727-752 (2010) 

[16]Alghabi, F., Schipper, U., Kolb, A.: Real-time processing of pnCCD images using GPUs. In: 
14th Int. Workshop on Radiation Imaging Detectors (2012) 

[17]Andritschke, R., Hartner, G., Hartmann, R., Meidinger, N., Strüder, L.: Data analysis for 
characterizing pnCCDs. In Proc. of Nuclear Science Symposium, pp. 2166-2172 (2008) 


