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Abstract During the past few years the increase of compnati power has
been realized using more processors with multiples and specific processing
units like Graphics Processing Units (GPUs). Alb® introduction of program-
ming languages such as CUDA and OpenCL makesyt eaen for non-graphics
programmers, to exploit the computational powemassively parallel processors
available in current GPUs. Although CUDA and Openflieve programmers
from considering many low-level details of paralf@ogramming on multiple
cores on a single GPU, the same support at a higkiel of parallelization for
multiple GPUs is still under research. In particufandamental issues of memory
management and synchronization must be dealt vttty by the programmer.
In this chapter we introduce concepts for CUDA-blakameworks which are de-
signed for stateful stream data processing for fgtédge arrangements of pro-
cessing modules on two or more GPUs in a singlepctennode. We evaluate
these concepts and further elaborate on the appafagur choice. Our approach
relieves the programmer from error-prone choresneimory management and
synchronization. The chapter presents detaileduatiah results which demon-
strate the scalability of the proposed frameworé.dEmonstrate the usability of
our framework, we utilize it for demanding on-lipeocessing in the areas of crys-
tallographic structure detection and video decoypti

Keywords: GPGPU, Software Framework, Multi-GPU, egtn Data Pro-
cessing



7.1 Introduction

Although the idea of parallel processing has beenral for some decades, the
interest to this field and its applications in wais scientific and engineering areas
has grown significantly in the past few years. EBhare two reasons that have
played a major role in this growth. One reasorhé advancements in hardware
industry which have enabled processor manufactu@rput more processing
cores on a single die, thereby moving the pargitegramming from expensive
mainframes and clusters to desktop computers.fabiss verified by noticing the
widespread use of multi-core CPUs and many-core $sRUJalmost any PC
around the world. The second reason is the intimuof languages, libraries and
tools that ease the task of parallel programmimgHese processors. Particularly,
we can mention CUDA and OpenCL which both targetU&Rind unleash the
huge computational power even to programmers notilile with computer
graphics.

Both OpenCL and CUDA offer general-purpose applicaprogrammers with
great support for parallel programming. This isaaaplished by providing con-
cepts and features that easily map to real-wordlpms which are parallel in na-
ture, thus enabling efficient exploitation of cortgtional power delivered by the
numerous cores of a single GPU with minimal effétthough these features
work well for cases where there is only one GPUlalkike in the compute node,
they are not so easily extensible to the casesenineitiple GPUs exist in a single
node. Thus, it remains the task of programmer ke tare of any details in order
to provide the same degree of scalability at tlkiw fevel of parallelizationngulti-
GPU, single-node parall€elization) as the one available across the cores on a single
GPU.

This chapter specifically addresses the conceptraatization of a CUDA-
based framework for multi-GPU, single-node paraltlon problems, where
GPU-scalability is a major concern. The framewods lbeen designed with easy
use by application programmers in mind. As a comerge, transparency is an
important property of the proposed framework, maiwith regard to memory
management and synchronization. Actually the mogiortant programming task
left to the application programmer is writing CULk&rnels responsible for pro-
cessing of data as if they would run on a singléJ@Bde. _

We assume the data is provided as sequences ofgemeous data seb¥(t;)
(frames at timet;), wherei indicates the last processing modMewith which the
data has been processed. We address a specific aflatream processing [1]
problems, which can be characterized as follows &so Fig. 7.1):

Module-Based Stream Processing: We assume data to be loaded to the
framework via one or seversburce modules and to be processed by sevemal-
cessing modules. The resulting data is exported gak modules.



A moduleM; can be seen as a CUDA kernel which processessulats, i.e.
transforming input dat&)"l(tj) to output dateD'(t) that is fed into subsequent

module(s).

simple split merge

DS(t,) D) DS (k) D) Tl M (D (1) D" (t:)

S (t; ) 5 i (¢ j s M (L i) 4
Mn(D%(t:)) My (DS (t:)) | D52t
D%(t;)
intra-module feedback inter-module feedback

DI(t;) 5 Dr () DI (L) 5 D™ it;)

—_—] Ma(DS(t), Mn(D5(t:), D) DMy | —
D (tin)) D™(ti_1)) | — L 2 M (D)

[_ Dl(tiy) _] ( D™ (t;_q) j

Fig. 7.1. Processing modules and their arrangement, ingustiream splits (top-middle), merges
(top-right), intra-module feedback (bottom-left)datne optional inter-module feedback (bottom
right)

Graph-Based Layout: The stream data is transferred between moduldéshwh
can be arranged like a graph, including streantssaiid stream merges.

Stateful Processing of Data: It means that previous data or processing results
are required for processing newly arrived datasTérealized usingntra-module
feedback; here, the processing in mod of framet; also depends on the prior
result ofthe same module, i.e. oD'(t;.,).

Inter-M odule Feedback (Optional): Inter-module feedback improves on the
intra-module feedback by letting two distinct magkibe connected via feedback.

As a result, the addressed problem class is marergkthan standard pipeline-
processing and thus it has a wider range of apjita Stateless problems, never-
theless, can still be subject to automatic multidgiRocessing.

In order to give an impression of how useful oaniework is, we briefly dis-
cuss two applications from different domains h€ge application lies within the
scope of information security. To protect againsauthorized access to infor-
mation, various cryptographic and steganographgoréhms have been devel-
oped. Not surprisingly, videos form an importanbdass of data which are re-
quired to be protected against unauthorized acddss.rapid growth in size of
videos (due to increasing resolution, colour defitame rate, ...), however, has
made the task of applying complex methods compmrtatiy quite expensive. One
scenario shows the on-line application of cryptpbia and steganographic meth-
ods.

The second application lies within the field of tgllography. One common
practice in the community is to study the structofecrystals by examining a
sample using x-ray imaging. Here, a crystal sangpladiated by an x-ray beam
and the scattered radiation pattern is detecte@rbgnergy-dispersive pn-type
charge coupled device (pnCCD) sensor. This camemargtes images with 384 *
384 pixels and 2 bytes of information per pixetatrently 400 frames per second,
yielding an overall data rate of beyond 112 MB/se Dverall goal of these kinds



of experiments is to have near real-time data aislg order to be able to directly
detect improper adjustments of the setup or wrogqmeemental parameters. Fur-
thermore, in the near future, these experimentapseshould be applied for con-
tinuous analysis of large sample sets. In a separition, we show that how suc-
cessfully our framework is used to address thidlerm.

The remainder of this chapter is organized as VigdloSec. 7.2 gives an over-
view of works done in the area of multi-GPU as veslstream data processing.
Sec. 7.3 describes the parallelization conceptsimptementation details for the
framework. Sec. 7.4 presents some experimentalatiahs. In sec. 7.5, as men-
tioned, two real-world applications where our framek has been utilized are
elaborated. Finally, Sec. 7.6 concludes the chagtéra brief discussion.

7.2 Related Work

As stated in the introduction we focus on multi-GRlihgle-node paralleliza-
tion for stream data processing. Consequentlyhénfollowing we first mention
works mainly characterized by running on multi-GBYstems and then those
which deal with stream data processing.

In [2] Enmyren and Kessler propose a skeleton puogning library for sys-
tems with multiple CPU cores and GPUs. This is equshed by use of CUDA
and OpenCL as the backends for code running on @RlJOpenMP for CPU
code. The operations supported by their librarjofelMapReduce model and are
in the form of a C++ template library. [3] proposas approach for high-
performance scientific computing on single- and tm@PU systems. An im-
portant feature of the prototype implemented inghper is the separation of algo-
rithm description from mapping to the hardware vahis achieved through the
definition of a domain-specific language. The laage is defined in close collabo-
ration with experts of the domain for which thenfigwork is intended. In [4]
Chen et al. propose a task-based queue schemgstens with one or multiple
GPUs. The main goal of the scheme is dynamic I@dancing which is achieved
by breaking down the computations into fine-graitesks and then dynamically
assigning them to GPUs. Note that in the casengflesiGPU systems this reduces
to assignment of tasks to CUDA cores available @dBPaJ which is reported to
outperform the CUDA scheduler in case of unbalangetkload. Chen et al. fur-
ther develop on this work to support GPUs on défdrnodes in a cluster [5].
They also improve their scheme for dynamic loadiheihg on individual nodes
with multiple GPUs. As an interesting applicati®tuart et al. [6] have proposed
a multi-GPU design for volume rendering. In thenplementation, parallel vol-
ume rendering has been fit into MapReduce modelrancn a cluster of nodes
equipped with GPUs. As a rather innovative workgmsents a performance pre-
diction model for multi-GPU systems, which gives estimate of the expected



performance improvement when moving from a singldJ@o a multi-GPU sys-
tem, based on the performance results on a singlg-§ystem.

In summary, all of the above-mentioned approacitesrefocus on a problem
domain that does not include the problem domairrested in this chapter, or
they use a different hardware setup, e.g. CPU@lsistor which the concepts can
not be directly applied to our hardware setup.

Considering related works mainly characterized tbgagn data processing, [8]
presents a framework for processing of multipleadstteams on heterogeneous
systems where both CPUs and GPUs are used as gookeEhe paper proposes a
method for assignment of streams to CPUs and GRUls that hard real-time
constraints of stream data processing are satisfiathagiwa et al. [9] elaborate
on their efforts for porting an already existingurfrework for stream data pro-
cessing on single GPU from previous GPU generationsresent ones. To this
end, they use CUDA. This, in addition to the useOpfenGL and DirectX for
GPUs of old generations, leads to the developmért fsamework capable of
running on different generations of GPUs. Teoddrale[10] introduce a stream
data processing framework capable of exploitingdtwaputational power of both
CPUs and GPUs. A significant point with their framoek is a mechanism for de-
termining on which type of processor (CPU or GPhB processing should be
done (provided that the code for both types of @ssors are given). The frame-
work uses CUDA as computational backend on GPUsizEipet al. [11] present a
programming model which can be used for stream plateessing on multi-GPU
systems. The innovation of this work is its use system design language
SystemC which is used as a high-level languagédscription of the desired pro-
cessing, thereby hiding many low level details frasers. Zhang and Mueller
propose a scalable stream data processing framemudh runs on GPU clusters
and is based on CUDA [12]. It makes extensive ustemplate-based generic
programming techniques in C++ to offer programmigbédnd uses MPI for inter-
node communication. As the last work in this settigogelgesang et al. [13]
have developed a GPU-based image processing fratkewdch supports CPU
usage as well. Similar to [10] their framework okes between CPU and GPU
codes provided that both codes exist. The framevgogyports processing on a
cluster of nodes and uses OpneCL as computati@cikind.

All of the mentioned stream data processing appresatack support for either
multi-GPU or the problem domain addressed in thiapter (i.e. stateful stream
data processing).

7.3 The Framework

In this section, we first describe possible paliabgion concepts for the ad-
dressed problem domain (Sec. 7.3.1). The evaluatfothhese concepts in Sec.
7.4.1 forms the basis for final implementation, ethis described in Sec. 7.3.3.



Remember that our framework assumes that all ooniyajof processing is
done on GPUs, thus a processing module can beysedelsidered as a user-
defined CUDA kernel in most cases. Tr@cessing graph is a collection of mod-
ules which describe the flowchart of processingedon data, including stream
source and stream sink modules (see Fig. 7.1)

7.3.1 Basic Concepts

An important design question while developing thenfework is how to dis-
tribute the computational load over several GPU§ as a consequence, how the
synchronization and the data management is orgé&nize

Since in our treatment of the framework the comipantal load is decomposed
into modules, this question reduces well to thatm# to assign different modules
to GPUs. We consider two completely different apgts, i.e.

Distributed Graph: In this first concept, the processing graph isddid intoN
sub-graphs, wherl is the number of GPUs, and modules within eachgsaph
are strictly assigned to a separate GPU.

Multiple Graph Instantiation: In this concept, on the other hand, one instance
of each module or more precisely one instance@fithole processing graph runs
on each GPU.

Tab. 7.1 summarizes their main characteristicseNlwat there are two variants
of the Distributed Graph approach (see Sec. 7.3.2).

Table 7.1. Characteristics of the different concepts

Multi-threaded Distribut-Single-threaded DistribuMultiple Graph Instantia-

ed Graph ed Graph tion

Architecture - One Instance - One Instance - Multiple Instances
- Modules Distributed - Modules distributed - One Instance per GPU
over GPUs Over GPUs - One or More CUDA
- One CUDA Stream per- Two CUDA Streams peStream(s) per GPU In-
Module GPU stance

Synchronization ~ CPU-thread Synchronif2lJDA Stream Barrier ~ CPU-thread Synchroniza-
tion tion

Memory Transfers Source, Sink, GPU-  Source, Sink, GPU- Source, Sink, Feedback
borders borders

Load Distribution Module Distribution Module Disition Built-in

Inter-module FeedNot Supporte Container Modules Main Memory

back
In order to select one of the concepts for fimplementation, we have im-
plemented preliminary versions of both conceptesEhpreliminary versions are
fully functional in terms of data management, syoadliration and process-




control. Based on the preliminary implementatidre performance of the con-
cepts has been evaluated (see Sec. 7.4.1). Thecessethe evaluation is, that the
Multiple Graph Instantiation approach outperforims two variants of Distributed

Graph in almost all test cases except when the euwibintra-module feedbacks
is large enough. Thus, we made the choice to follglement the Multiple Graph

Instantiation approach. Consequently, the techrdeatription of the Distributed

Graph concept is less detailed than the one fotiMalGraph Instantiation.

7.3.2 Distributed Graph

There are two variants of the Distributed Graphrapph. The major difference
between these two variants is the number of CP&hts used for controlling the
modules, which strongly influences the synchromimatmethod to be applied. In
multi-threaded variant each module is controlledabgeparate CPU thread (see
Fig. 7.2). The module stores its result in a smatput ring-buffer. If a module is
idle, it polls the output buffer of the predeceswrnew data to process. If this is
the case, new data is copied to an input buffenvi@d oDevice copy) and pro-
cessed. If no new data is available, it yieldgiite slice. If a module has a suc-
cessor, that is located on a different GPU, th@wtuting-buffer is mirrored to the
host memory (DeviceToHost copy). On the other hand,module has a prede-
cessor that resides on a different GPU, it copgiesdata from main memory to its
GPU memory (HostToDevice copy). The modules arelssonized via the ac-
cess to the output ring-buffer. In single-threadadant all modules are controlled
by the same CPU thread (see Fig. 7.3), which @lll€UDA functions (kernel
launches and memory transfers) asynchronously. TW®A streams are used
for each GPU, one for data transfer and the otbekérnel calls, thus partially
hiding data transfer time by overlapping kernehletuand memory transfer. Be-
fore the next frame is processed, the CUDA streammsynchronized by a barrier.

GPU 0 GPU 1
Module A Module B Module C
D* (Fith Kernel a Ip*(t4) Kernel b Db(t 1) Kernel ¢ Di( i.__g)
D DitH H{D
~ |eopyl % copy | co rg,;
CUDA Stream a CUDA Stream b s, ,  CUDA Stream ¢
Sync \.Svm: 3
CPU thread a - CPU thread b - CPU thread C
vy

‘ Host Memory ¥ |
Host

Fig. 7.2. Distributed Graph, Multi-threaded Variant: Eachdule runs in a separate CPU thread.
The processing is synchronized via access to tigehiuffer. Data transfers across GPU borders
are managed via the main memory.




This approach requires a manual decomposition efctbmplete processing
graph intoN sub-graphs to be distributed to th&sPUs. The load distribution is a
direct result of this decomposition and thus aidiff task left to the user.

rrrrrrr > cuda stream 1 GPU 0 - — — 3 cuda stream 1 GPU 1
——— > cuda stream 2 GPUOQ —-.—-. > cuda stream 2 GPU 1
GPU 0 GPU 1
Module A Module B Module C
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Fig. 7.3. Distributed Graph, Single-threaded Variant: Irstboncept, all modules are triggered
within a single CPU thread using asynchronous Clias. Two CUDA streams for each GPU

are used to partially hide data transfer time. AD@Ustream barrier is used to synchronize after
each process iteration.

7.3.3 Multiple Graph Instantiation

At the very heart of the proposed framework liesimaple idea: processing all
the input stream(s) data at a specific time $tdyy a single GPU (see Fig. 7.4).
Precisely speaking, fad > 1 GPUs, numbered from 0 b - 1, the data from all
input streams at time stép O is processed by GPiunod N. This has an immedi-
ate consequence of nearly perfect load distributieer GPUs in case of data-
independent processing.

Although the basic idea behind the proposed framkeugquite simple, there
are still a few other considerations which afféwt framework design in a signifi-
cant way. The two most important considerations symechronization and main
memory management which are largely influencedhaydtateful processing re-
quirement of the framework, i.e. the realizationtlé intra- and inter-module
feedback functionalities. For the Multiple Graplstimtiation approach, feedback
data is transferred first from the memory of oneU@B the main memory of the
system and then from there to the memory of ano8RU. This leads to two
memory transfer operations between host and devitteadditional synchroniza-
tion requirements, whereas in the Distributed Graphcept this data remains on
the same GPU.



Besides the two aforementioned considerationsethee still a few less im-
portant ones which are specifically taken care cofexploit useful features of
GPUs offered by CUDA. Notably, GPU memory managenam concurrent
CUDA kernel launches and memory copies are amoeggthThese last two points
together with synchronization and main memory manaant are separately con-
sidered in the following four subsections.

o Stage n ! Stage n+1 ! Stage n+2
) GPU 0 L D(ti) :
;;; , Module A :|_. Module B Db(#?«;) Module C
S 1) e A e : 2
| lm_=liwle =l | l= =]
T Ht.ii)‘c‘(;l-)); S -
o Host Memory .~ DtH copy
GPU 1 .f/} D*’(tz-) !

.
Module A |

. : , bis: ‘ e
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Fig. 7.4. Multiple Graph Instantiation: The whole processgmgph is executed on each GPU

(here, only 2 GPUs are shown). Data transfergnter- and intra-module feedbacks are handled

via main memory. The input and output buffersswapped during stage changes to save GPU
memory (see Sec. 7.3.3).
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7.3.3.1 Synchronization

Considering the basic idea of the framework, th&teuld be a mechanism
which ensures us that the GPUs both read the ifputs sources and write the
outputs into the sinks in correct order. In orderreéalize this behaviour, the
framework launches as many CPU threads as GPUsveaeh CPU thread is in
full charge of a GPU. This, in turn, lets the framoek control the order of access-
es to input as well as output streams by diffe@Rts through the use of syn-
chronization objects defined at CPU thread levble $ame mechanism is used to
let each GPU access the processing results of(8)pattprevious time step, there-
by enabling the stateful processing property offtasework.
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7.3.3.2 Main Memory M anagement

Main memory can be regarded as the major gatewatheofframework for
communication with the outside world. Actuallyjstthe place where inputs rep-
resented by sources are read from by GPUs andtatsthe place where outputs
represented by sinks are written into by GPUs diditéon to these two functional-
ities, the main memory also serves another impbparpose: providing a place
for exchange of data between GPUs. This lattertpmimbined with previously-
mentioned synchronization mechanism which is useslyhchronize accesses to
common main memory areas between two GPUSs, retilizestateful processing
capability of the framework.

7.3.3.3 GPU Memory M anagement

Although a straightforward way for GPU memory magragnt is to allocate
memory for inputs and outputs of all modules in phecessing graph, the frame-
work employs another strategy for this. The motorafor this has been better uti-
lization of precious GPU memory. To implement thiisategy, the framework in-
troduces the concept of stage. A stage is defisecbenposed of modules whose
inputs are produced in previous stage(s). SucHinaititen is a recursive one and
the only requirement is to define the first stage.complete our definition, the
first stage is considered to be composed of onlycas.

Now that we have organized all the modules in tlee@ssing graph into stag-
es, GPU memory management can be described aataloof two separate areas
on GPU memory. From one of the GPU memory areainhés for all modules
in the current stage are read and into the otreothputs of all modules of the
current stage are written. The roles of the two GRémory areas are swapped
when finishing current stage and starting a new diés way the output area of
current stage becomes the input area of the naye,sthus ensuring the desired
behaviour. This swap process is repeated whenestga is complete and a new
one begins. Note that this GPU memory managemeatiegy is done for each
GPU separately and the two GPU memory areas aveaddld on global memory
of GPUs. This latter point ensures the data arsigtent between two consecutive
stages.

7.3.3.4 Concurrent Kernel Launches and Memory Copies

A useful concept introduced in CUDA is that of CUB&keams. An immediate
consequence of this concept is the possibility aicarrent kernel launches as
well as concurrent kernel execution and copies éetvwmain and GPU memories.
With the aim of increasing performance, the framaws designed to exploit this
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valuable feature as well. For this purpose, thenéaork provides the user with
some CUDA streams on which to launch kernels.

7.4 Experimental Evaluation

In accordance with how the effort for developmeinthe framework is divided
into two main phases (see Sec. 7.3), the evalumtarried out are well catego-
rized into two major groups, i.e. those aimed atgblection of a concept for final
implementation (Sec. 7.4.1) and those to depictsttadability of the final imple-
mentation (Sec. 7.4.2). Note that the system usedufining all the experiments
in this chapter is equipped with 4 Tesla C2050 GRHsh having 448 CUDA
cores and connected via a separate PCI-Expresd @.iterface. The system also
has two Intel Xeon E5630 2.53 GHz Quad-Core CPUis 24GB of RAM. Final-
ly the system runs Windows Server 2008 R2 as tleeabipg system.

7.4.1 Comparison of Preliminary |mplementations

The evaluation of the preliminary implementatioashased on three different
processing graphs. The stream data for all expetsneonsists of 10.000 data
frames of 384 * 384 2-byte data elements, addingoupome 2.75 GB. Further-
more, we vary the amount of computation perfornrreéach module. Therefore,
we use two different CUDA kernels, otight kernel, inducing relatively little
computational effort, and orfeeavy kernel with high computational costs. Then
the average time measurement is reported. As #teotant, in Distributed Graph
experiments the distribution of modules among GRWwne manually in order to
get the best load balance for each processing graph

The first processing graph examined isedal processing graph, in which the
processing modules are connected sequentiallyreidniumber varies from 1 to
10. Fig. 7.5 shows the result for this experim@ihlis experiment is ideal for par-
allelization, since the least amount of data trang required, i.e. no feedback,
splitting or merging. The Multiple Graph Instanitiett completely outperforms the
two variants of Distributed Graph in both light anelavy kernels. There is, how-
ever, an interesting observation: for the heavpégithe Multiple Graph Instanti-
ation implementation performs almost linear, wher#ds is almost constant in
light kernel version. This effect is due to thetftltat the computation done in
heavy kernel is large enough to constitute moghefmeasured time whereas in
light kernel version other operations such as (GBtU) to device (GPU) and de-
vice to host memory transfer times dominate the ptation time in kernels,
leading to an almost constant performance. Notethese two types of memory
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transfer operations are performed exactly the sammeber of times regardless of
the number of processing modules in the serialgesiag graph.

Serial Module Arrangement

10 T

Mufii-threaded Ditributed Graph, Tight kernel ---&--- Sw--ene
Single-threaded Distributed Graph, light kernel - -~ .
= Multiple Graph Instantiation, light kernel —&— s

Multi-threaded Ditributed Graph, heavy kernel ---4--- -
Single-threaded Distributed Graph, heavy kernel - -&-- e
H Multiple Graph Instantiation, heavy kernel —a— -

Number of Process Modules

Fig. 7.5. Serial processing graph experiment performed @il processing modules consisting
of either light or heavy kernels for all three cepts

The next experiment is conducted usingaeallel processing graph, where the
processing modules are arranged in a purely pafaikion and their count varies
between 1 and 10. The results of experiments aersin Fig. 7.6. The Multiple
Graph Instantiation concept again outperforms the variants of Distributed
Graph. Once again, the same effect as the onayir/B can be seen for light and
heavy kernel modules used in the Multiple Graphamisation. This can well be
explained by the same line of reasoning as thestaied for serial processing
graph.

In the last processing graph, we use a more congrl@ngement consisting of
23 processing modules (see Fig. 7.7). In this msiog graph some of the pro-
cessing modules have an intra-module feedback ahgbar of which ranges be-
tween 0 and 23. As can be seen in Fig. 7.8, theaipeilGraph Instantiation per-
forms better than multi-threaded Distributed Gragbwever, for a large number
of intra-module feedback, the single-threaded bisted Graph outperforms the
Multiple Graph Instantiation. This effect is a ditegesult from the data transfer
required for feedback, i.e. the intra-module fee#ttianplementation in the Multi-
ple Graph Instantiation is more expensive thanSitsgle-threaded Distributed
Graph counterpart (see Sec. 7.3.3).
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Parallel Module Arrangement

15 T T T T T T
Muflti-threaded Ditributed Graph, light kernel --—-=--— ' '

- Single-threaded Distributed Graph, light kernel - -&-- B
Multiple Graph Instantiation, light kernel —&— |

- Mu lti-threaded Ditributed Graph, heavy kernel ----a--- et
Single-threaded Distributed Graph, heavy kernel --a-- L P
- Multiple Graph Instantiation, heavy kernel —a— P
10 — —

o
.
¥

Time [s]

1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Number of Process Modules

Fig. 7.6. Parallel processing graph experiment performetd wifl0 modules consisting of either
light or heavy kernels for all three concepts

— = = ® Optional intra-module connection @ Sink

— TI'ixed connection @® Source (I Processing Module

Fig. 7.7. Complex processing graph used in Sec. 7.4.1
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7.4.2 Scalability and Feedback

The Multiple Graph Instantiation approach by defaupports the optional
functionality of inter-module feedback. To be psegithe implementation does
not make any difference between intra- and intedui® feedbacks. We conduct-
ed some experiments regarding this feature in dalewvaluate the effect of feed-
backs on the scalability in terms of the numbeG®Us. Therefore, we generated
a processing graph, consisting of a linear sequehoeodules with an additional
inter-module feedback (see Fig. 7.9). For the at&un we vary the computation-
al load of modules bridged by the feedback andoties outside the bridged sub-
graph.

Complex Processing Graph with 23 Process Modules

70 =

= “Mulfi-threaded Ditnbuted Graph, Tight kernel & ' ]

2 Single-threaded Distributed Graph, light kernel -—-8-— 3

= Multiple Graph Instantiation, light kernel —&— E

80 B+ Multi-threaded Ditributed Graph, heavy kernel ---4--- =

= Single-threaded Distributed Graph, heavy kernel -~ 3

= Multiple Graph Instantiation, heavy kernel —a— 3
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Fig. 7.8. Complex processing graph experiment performed @48 intra-module feedback(s)
using either light or heavy kernels for all thremcepts
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Fig. 7.9. Processing graph used for examining the effedieefiback on scalability (see Sec.
7.4.2)

The results regarding the scalability are showhign 7.10. As expected, inter-
module feedback reduces the performance of ourefnaork. Naturally, bridging
the whole graph completely, i.e. having no compaita load outside the bridged
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sub-graph, completely destroys the GPU parallelisimce the first processing
module can procesiéo(t,-+1) only after the last module N has generated italres
DN(t,-). The rate of performance degradation is relatettie¢ proportion of the time
spent within the feedback sub-graph and that spatstde the bridged sub-graph.

Scalability - computation time vs. number of GPUs

Relative computational load inside feedback sub-graph 6/8 ——
Relative computational load inside feedback sub-graph 4/8 - -~
20 Relative computational load inside feedback sub-graph 3/8 ---#---

Relative computational load inside feedback sub-graph 2/8 ---&---
Relative compuiational load inside feedback sub-graph 1/8 -

Time [g]

5 1 1
2 3

Number of GPUs

P

Fig. 7.10. Scalability and feedback in terms of the propaorta the computational load inside
and outside the feedback sub-graph

7.5 Applications

In this section we present two different applicasiavhich have been success-
fully addressed by our framework. The first apgiima deals with information se-
curity whereas the second one is in the field gétailography.

7.5.1 Information Security using Crypto- and Steganography

Cryptography and steganography form two major gsafpmethods within the
scope of information security. While cryptograpkyniore concerned with hiding
the content of a message, steganographic methpds hide the message itself.
To better clarify the difference between the twoe @an consider the case of a
simple piece of meaningful text communicated betwsender and receiver. In
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case of cryptography, one would encrypt the mednirigxt such that each letter
is replaced by another thus leading to an unmeéringxt. In steganography,
however, the meaningful text (referred to as carecover text) could be written
in such a way that the secret message is formex tine first letter of each word.
As can be seen in this simple case, the advantageganography over cryptog-
raphy is that it doesn't attract the attentiontafse who accidentally access the
text, whereas the encrypted text would raise simpithat there is a secret mes-
sage hidden in the unmeaningful text. Thereforgptographic methods only pro-
tect the content of a secret message while stegaplog deals with protection of
both secret message and communicating parties.

In this section our framework is exploited to death an application where
both cryptographic and steganographic methodsram@vied. The goal is to ex-
tract a sequence of secret hidden images from enyed cover video. The video
is encrypted based on method of [14]. In our im@atation it is assumed that
each video frame in the memory is divided into dtauaf 8 bytes and correspond-
ing chunks in consecutive frames form a separajeesee of plaintext blocks.
Furthermore, in each video frame a secret imadrediden using least significant
bit which is a steganographic transform wherebyeténformation are written in-
to least significant bits of image pixels thus éagshard-to-perceive degradations
in visual quality of cover image (The interestedder is referred to [15] for a sur-
vey of this and other image steganograohic meth@#sed on these assumptions,
our framework first decrypts a video frame by apmjymethod of [14] to obtain
the cover image and then extracts the hidden intagepplying the reverse
steganographic transform to the cover image (Adcpssing for this experiment is
done on GPUs). Note that in this implementation dieeryption result of each
video frame is affected by that of previous onesthequiring feedback as shown
in Fig. 7.11. Note that H and p are decryption pai@rs as defined in [14] and
the task of two modules H image and decrypted framteaction is to separate
these two pieces of data which are combined abthiput of frame decryption
module and provide them on their outputs.

e H Image )
Video 3 Hidden
Extraction
Frame Frame
Frame Reverse ;
Decryption Steganographic
) Transform
Decrypted
Frame
Extraction

Fig. 7.11. Processing graph used to extract hidden imageeseguvideo) from encrypted cover
video
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The experiment is done using HD Videos of size 192080, 24 bpp as cover
video. The result would be a video (image sequeats)ze 1920 * 135, 24 bpp.
This is because from each byte in the input videly the least significant bit is
preserved thus reducing the size to one eighth.tifilieg results for 2, 3 and 4
GPUs are shown in Fig. 7.12. Also shown in therigare timing results for CPU
implementation of the same algorithm using 1, 2n8 4 CPU threads to provide
the reader with a ground to compare with. Considethe typical frame rate of
1080p HD videos which is between 24 and 60 franegsspcond, one can easily
see that the 4-threaded CPU implementation can lanhglle frame rates near the
lower bound of this range whereas the two-GPU imgletation supports frame
rates well beyond its upper bound.

Timing Results for Hidden Video Extraction

160

120 - R

100

80

Frames per Second

60

= |

1 CPU 2 CPU 3CPU 4 CPU 2GPUs 3 GPUs 4 GPUs
thread threads threads threads

Fig. 7.12. Timing results of hidden video extraction from gmted HD video using different
number of CPU threads and GPUs

7.5.2 Crystallography using a pnCCD Camera

Considerable amounts of information about cryssas collected through ex-
amination by x-ray. There are different types ahy-sensors which record the re-
sult of these examinations. One such sensor inamgg-dispersive CCD with fast
read-out called pnCCD camera (see Sec. 7.1). Teeifgmtions of this camera
were mentioned in introduction. Getting familiartkvthe operation of the camera,
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however, needs some basic knowledge of the dordéiren x-ray beam is scat-
tered by crystal sample, scattered x-ray photonghki camera image plane. De-
pending on the position of incident photons onte itmage plane, a number of
pixels are illuminated thus producing non-zero piraues. Pixels illuminated by
a single photon are collectively called an eveneris can be consisting of 1, 2, 3
or 4 non-zero pixels (the so-called single, doubilple and quadruple events, re-
spectively). Fig. 7.13 shows valid patterns for laleutriple and quadruple events.
However, it may happen that in an image we havalid\patterns. These patterns
are caused by two or more photons whose eventrpatiaterfere and make a
cluster of events. A solution to this problem idriorease the frame rate such that
the probability of occurrence of interfering patiterdecreases. That is why,
pnCCDs support such high frame rates as 400 frgpeesecond. Determining
valid events in each frame forms the basis for mathgr crystallographic exper-
iments which rely on analysis of events.

SRERE"SES "I nlunls "N ululia"

Fig. 7.13. Valid double, triple and quadruple events: Red ki@ pixels show the highest and
lowest pixel values in an event, respectively.

We have developed kernels for extraction of validres from pnCCD frames
[16] which is based on [17]. The whole processiag te split into two major
steps of frame correction and valid event extractiss Fig. 7.14 shows, first an
offset map is subtracted pixelwise from the raw @BCframe. During common
mode correction the median value for each row efitage is computed and then
subtracted from all pixel values of the correspogdiow. The processing contin-
ues by 'Zero' pixel elimination whereby all pix@hose values are less than cor-
responding pixel values in a noise map image midtdpby a constant factor are
discarded. In gain correction the pixel valuesaehecolumn are multiplied by a
gain factor. In CTE correction for each column pineel values are multiplied by a
CTE factor raised to the power of the pixel's rodex. Now, we have corrected
frames which are then used to extract valid sindtyble, triple and quadruple
events. Fig. 7.15 shows the performance and sdafabi our framework while
working with different number of GPUs (2 to 4) adifferent frame sizes (Note
that all processing modules in the processing grapton GPU). To better show
the usefulness of GPUs for event extraction, weehamplemented a single-
threaded CPU version of the mentioned algorithme TRPU version processes 92
frames of size 384 * 384 per second whereas thisbeun is 1756 when 2 GPUs
are used thus leaving a lot of computational pdaefurther processing of events
(Note that event extraction is only a first protegstep in many crystallographic
applications).
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Raw pnCCD Event-extracted

Image @
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Offset Map Mode CTE Valid Event
Substraction Correction Correction Extraction

® e

Fig. 7.14. Processing done on each raw pnCCD image to extadict single, double, triple and
quadruple events
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Fig. 7.15. Timing results of valid event extraction for varonumber of GPUs and frame sizes

7.6 Conclusion

In this chapter, we presented a scalable CUDA-b&sedework for stateful
stream data processing on multiple GPUs in a singlde. As described, the
framework is designed to be both easy to use anxibfe from the user part. The
ease of use is achieved by transparent implementafi the framework with re-
gard to synchronization and memory management., Tioiwever, does not limit
the flexibility of the framework in the sense tlhé user still has unlimited free-
dom to define the CUDA kernels for processing meduls desired.

Still the most important feature of the framewoskscalability. For that, the
chapter also presents a number of experimentstébefsl processing of stream
data and examines the effect of feedback in prawegsaphs on the scalability of
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the framework with regard to GPUs. Furthermore,ghacticality and usefulness
of the framework for real-world tasks is demongtdaby two different application
scenarios.
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