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Abstract
The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, are part
of the daily clinical routine. Very frequently, MRI data are used to diagnose these kinds of pathologies in order to
avoid exposing patients to harmful radiation, like X-ray.
We present a method which detects and segments all acquired vertebral bodies, with minimal user intervention.
This allows an automatic diagnosis to detect scoliosis, spondylolisthesis and crushed vertebrae. Our approach
consists of three major steps. First, vertebral centers are detected using a Viola-Jones like method, then the ver-
tebrae are segmented in a parallel manner and, finally, geometric diagnostic features are deduced in order to
diagnose the three diseases.
Our method was evaluated on 26 lumbar datasets containing 234 reference vertebrae. Vertebra detection has
7.1% false negatives and 1.3% false positives. The average Dice coefficient to manual reference is 79.3% and
mean distance error is 1.76 mm. No severe case of the 3 illnesses was missed, and false alarms occurred rarely –
0% for scoliosis, 3.9% for spondylolisthesis and 2.6% for vertebral fractures.
The main advantages of our method are high speed, robust handling of a large variety of routine clinical images,
and simple and minimal user interaction.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image processing and computer vision]:
Segmentation—Pixel classification

1. Introduction

Lower back pain for adults is rather common and its preva-
lence is rising [FHA∗09]. The most common causes involve
spinal cord, such as narrowing (stenosis) of the spinal canal,
and that has been well investigated. For diseases involving
the vertebrae 2D X-ray is frequently used for screening, but
authoritative diagnosis is made based on Computed Tomog-
raphy (CT) or Magnetic Resonance Image (MRI). The can-
cer risk from radiation exposure in CT imaging [RGMB10]
makes MRI preferable in the clinical routine. Furthermore,
2D X-ray and CT cannot reveal all pathologies, and fre-
quently the usage of MRI is diagnostically required.

† Contact author, dzenan.zukic@uni-siegen.de

Pathologies such as scoliosis (curvature in anatomical
left-right direction), vertebral fracture (crushed vertebra) and
spondylolisthesis (misaligned vertebra) can be diagnosed
from vertebral shapes, positions and orientations, so their
segmentations are a step required for diagnosis.

Most 3D approaches focus on CT datasets only, such
as [KOE∗09, ML13]. However, these methods rarely trans-
fer to MRI because of additional challenges. Routine MRI
has a lower and strongly anisotropic resolution. Unlike CT’s
Hounsfield unit (HU), MRI does not have standardized units
of measurement. In spine CT, bone edges are the only high-
intensity edges. In MRI there are strong edges between many
tissue types including edges within vertebral bodies, e.g.
Fig. 11. MRI also has a non-homogeneous intensity across
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the image, e.g. the central region has higher intensity and
better contrast than the marginal areas. Lastly, MRI has
many different parameters which can be changed to empha-
size different tissues, resulting in many different scanning
sequences which sometimes produce radically different im-
age intensities. All these facts are detrimental to the automa-
tion of segmentation procedures for MRI datasets.

Spinous processes are poorly seen on MR images of low
inter-slice resolution, which are the routine in clinical prac-
tice. Also, transverse processes are usually not seen at all be-
cause they are outside of the acquisition volume. Therefore,
we focus on the segmentation of vertebral bodies instead of
the whole vertebrae.

In this paper we focus on a segmentation system of prac-
tical clinical usefulness. This kind of system is required to
work on a large variety of routine clinical datasets contain-
ing pathologies. It has to be reasonably fast and should not
require cumbersome initialization. Finally, it must support
diagnosis of diseases of interest.

We present a novel method for the segmentation of ver-
tebral bodies in routine MRI datasets. These datasets have
highly anisotropic voxels (e.g. 0.6×0.6×4.4 mm3) and our
evaluation set consists of a large variety of MRI sequences,
see Tab. 2. Our three-stage approach first detects vertebral
centers, then segments the vertebrae in a parallel manner
and, finally, deduces geometric diagnostic features in order
to diagnose scoliosis, spondylolisthesis and vertebral frac-
tures.

The major motivation for extending our previous ap-
proach [ZVD∗12] was to further increase robustness, which
is the key feature for a reliable diagnosis of vertebral
pathologies. This paper presents the following contributions:

• Automatic detection of vertebral body centers and sizes
based on a Viola-Jones [VJ01] method with novel candi-
date filtering, which enables

– a global prediction of all vertebra centers, which im-
proves the overall segmentation and diagnosis process,

– parallelized computation of per-vertebra features, clas-
sified image merging and constrained inflation, and

– a novel size-goal force, which guides the segmentation
to detected vertebral body size, thus improving seg-
mentation accuracy.

• Optimization of algorithm parameters through training on
manually segmented datasets.
• Lastly, our center+mesh representation of segmentation

allows easy diagnostic measurements of the vertebral
shape in order to detect scoliosis, spondylolisthesis and
crushed vertebrae.

Our approach is efficient because it is globally single-
pass, and iterative only on the level of segmenting individual
vertebral bodies. Moreover, initial vertebral body detection
enables parallelization of estimating per-vertebra features.

Therefore segmentation of any individual vertebral body is
not dependent on segmentation results of any other vertebral
body, so there is no possibility that a failure in segmentation
will lead to misdetections or bad segmentations of the rest of
the sequence. The robustness is thus improved.

2. Related Work

Much research has already been done on spine segmentation.
There is a large number of 2D methods due to their relative
simplicity and low computational requirements [MCP∗09,
HCLN09, CGBM04, EKD∗12]. As 2D approaches process
individual slices they can miss important information, such
as a curvature or a positional shift in the anatomical left-right
direction, so 3D approaches are preferable.

We are aware of only five prior fully 3D segmentation
methods applied to MRI: Hoad and Martel [HM02], Da-
vatzikos et al. [DLSH02], Štern et al. [ŠLPV11], Ayed
et al. [APM∗12], and Neubert et al. [NFS∗11, NFE∗12].
Some are concerned with detection only [RET13, KWZ∗13,
SMB11] and could be plugged into our method replacing ini-
tial vertebra detection. Kelm et al. [KWZ∗13] optionally do
segmentation of intervertebral disks, but report neither pre-
cision nor running time. He et al. [HPE∗08] give a general
survey of deformable models not specifically tailored to the
medical (spine) segmentation.

Hoad and Martel [HM02] have developed a segmentation
algorithm that combines thresholded region-growing with
morphological filtering and masking using set shapes. Their
algorithm is initialized by one or two ellipses per vertebra,
and can be split into three steps: segmentation of the ver-
tebral bodies, segmentation of the posterior structures, and
lastly manual corrections. Their datasets have isotropic vox-
els (1×1×1 mm3), and they combined two images of a dou-
ble echo FISP acquisition sequence. Overall, it is a method
suited to assist spine surgery, using images quite different
from routinely acquired ones. They tested their method on 30
vertebrae. Surface registration error for vertebral bodies was
1.25mm±0.28mm. They also calculated average percentage
of “good” points to be 79.4%, with 3 rejected registrations
out of 30 experiments. Running time of their algorithmic part
was 5-10 minutes (not counting the manual steps).

Davatzikos et al. [DLSH02], with a long line of research
in hierarchical deformable models [SHD01], were mainly
interested in the registration of different spine images to a
manually segmented template image. An isosurface was ex-
tracted from this template image resulting in 837 vertices
(vertebral bodies L1 to S1 and a corresponding portion of
the spinal canal). This deformable model was trained on 13
additional images. In order to determine the transformation
which registers a test image with the template image, the sur-
face model is initially placed in the test image overlapping
the true position of the spine segment in the test image, and
hierarchically deformed to conform to the edges of the test
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image. The transformation between the stereotaxic space of
the template image and space of the test image is used to
determine the correlation between patient symptoms and im-
age lesions. The evaluation was done using the leave-one-out
method on routine images (0.93×0.93×3 mm3) of healthy
volunteers. The average overlap was 81.5%±3.6%. They re-
quire only one initialization per dataset but do not state the
execution time.

Štern et al. [ŠLPV11] perform the segmentation by opti-
mizing 29 parameters of a 3D deterministic model of the ver-
tebral body. They maximized dissimilarity between inside
and outside intensities, and steered their method by image
gradients. The method is initialized with one point per ver-
tebra and an accompanying size, depending on the anatom-
ical position, i.e. upper thoracic, lower thoracic or lumbar.
They evaluated their method on 75 vertebral bodies from
nine T2-weighted images. Three of their images were of a
routine type (0.4× 0.4× 3 mm3), the others were isotropic
(1× 1× 1 mm3). The mean radial Euclidean distance be-
tween the segmentation surface and ground truth points was
1.85mm±0.47mm. It takes 1-15 minutes per vertebra.

Ayed et al. [APM∗12] formulate segmentation as a
distribution-matching problem. They split it into a series of
sub-problems, each of which can be solved via a convex re-
laxation and the augmented Lagrangian method. This results
in a parallel method, and they implement CPU and GPU
variants. They used T2-weighted MR images of the lumbar
spine. They evaluated their results only on 2D mid-sagittal
slices, where they reach 85% DSC – a precision which cor-
responds to 78% for 3D case. The GPU variant runs for 3
minutes, and the CPU variant for 75 minutes.

Neubert et al. [NFS∗11,NFE∗12] localize 3D spine curve
and extract approximate positions of vertebral bodies using
active rectangles. This serves as initialization for segmenta-
tion using active shape models with shape deformation us-
ing gray level models. Vertebral bodies and intervertebral
discs are segmented. They use a high resolution SPACE MRI
sequence with in-plane pixel size of 0.34× 0.34 mm2 and
slice thickness of 1− 1.2 mm. They used 14 healthy vol-
unteers with 132 vertebral bodies for quantitative evalua-
tion. They achieve 91% DSC, 0.67mm mean absolute shape
distance and 4.08mm Hausdorff distance. They also classi-
fied intervertebral discs into degenerate and healthy classes.
Their method takes an average of 35 minutes per verte-
bra [NFE∗12], not counting some 3 minutes spent on in-
tensity normalization per dataset. The method is completely
automatic. This means that the user has no chance to correct
mis-detections, and this is especially important if running
time (5h) is taken into account.

Our system addresses the stated drawbacks (complex ini-
tialization, long running time, special MRI sequences) of
prior systems and allows for comparably fast and robust seg-
mentation of pathological spine and vertebra shapes on a
large variety of datasets (both T1 and T2 weighted). Com-
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Figure 1: High level diagram of the full system. Boxes with
thick black outlines are computationally intensive. Green
boxes employ parallel computation on the CPU. Light-green
is only partly parallelized.

pared to our prior method [ZVD∗12], which has been based
on a sequential detection of the vertebral bodies, our new
approach detects all vertebral centers in an initial step. This
increases the robustness of the detection and segmentation
of the vertebral bodies and, thus, makes a reliable diagnosis
possible.

3. Overview

The three major steps of our method are depicted in Fig. 1.

Vertebra Detection: In this stage, the vertebral centers are
detected using a Viola-Jones method [VJ01]. The initially
detected centers are filtered in order to remove false positive
and false negative detections and thus to minimize the re-
quired user intervention. Finally, the sizes of the user-picked
vertebral bodies are estimated (see Sec. 4).

Segmentation of Vertebral Bodies: The segmentation in-
corporates a multi-feature boundary classification and a bal-
loon inflation based segmentation approach. The balloon in-
flation operates under a constrained subdivision hierarchy,
which allows a smooth and robust segmentation with respect
to the (still noisy) combined boundary probability map. The
size parameter estimated in the detection stage is utilized to
increase robustness (see Sec. 5). The methods used in this
step, beside some minor modifications and the parallel exe-
cution, are directly taken from [ZVD∗12].

Diagnosis: Based on the segmentation result, position and
volume of the vertebral bodies are used to deduce disease-
specific parameters which drive the diagnosis (see Sec. 6).

Please note, that in contrast to our prior work [ZVD∗12],
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4 Zukić et al. / Robust Detection and Segmentation for Diagnosis of Vertebral Diseases using Routine MR Images

Figure 2: Left: training samples for Viola-Jones detector.
Green boxes are positive samples, yellow boxes are negative
samples. Right: ground truth overlaid over the original slice
(dataset F02, slice 9).

our new approach is detecting all vertebral centers in a first
step. This allows the parallel execution of several down-
stream processing steps (dark green components in Fig. 1).

4. Initial Vertebra Detection

This section describes the detection of all vertebral body
centers, used as initialization for the segmentation step. Af-
ter applying the Viola-Jones method to detect candidate
vertebrae (Sec. 4.1), the candidates are filtered (Sec. 4.2)
and minimal human intervention is needed to complete this
step (see Sec. 4.3). The Viola-Jones method was chosen
for its speed (a few seconds), because other approaches
like the Generalized Hough Transform or that of Vrtovec et
al. [VLP05] are slow (minutes to hours [ŠLPV10]).

In the following, we use the coordinate system induced
by the acquisition of sagittal MR images, i.e. with respect to
the human body, x is front-to-back, y is top-to-bottom and z
left-to-right.

4.1. Viola-Jones Detector

The training data for the (single) Viola-Jones detector is de-
rived from the reference segmentations utilizing all training
datasets jointly. A bounding box is determined for each ver-
tebral body on each slice of all datasets used for training.
Expanding this bounding box to a square serves as a positive
sample for detector training. All positive samples are resized
to 16x16 pixels and have 10 additional, slightly rotated ver-
sions (±15◦). The Viola-Jones detector has a built-in scal-
ing, and we targeted it to adults (20-50 mm squares).

Left, right and bottom rectangles of each slice, which are
not covered by positive samples, are added to negative sam-
ples (Fig. 2), along with all slices which contained no part
of reference vertebrae. Additionally some hand-chosen rect-
angles very near the vertebral bodies are added to negative
samples, otherwise some nearby structures such as aorta or
spinous processes get mistaken for vertebral bodies.

A boosted cascade with 40 stages, each stage with a min-
imum hit rate of 0.998 and target maximum false alarm rate

Figure 3: Vertebrae detection (red-filled points are candi-
dates on the current slice, empty points are lying on other
slices, the fitting curve is shown in blue; see Tab. 2 for infor-
mation about the datasets): Left, the unfiltered center can-
didates of dataset AKs5 and, middle left, a fully successful
filtering (the T12 gap was filled and the unwanted S2 ver-
tebra detection was removed). Unfiltered center candidates
of dataset AKs6 (middle right) with wrong result – 1 false
negative and 1 false positive after filtering (right). In 38%
(10/26) of datasets no user intervention is required.

of 0.5 (limited by maximum stage size of 100 tree stumps)
has been applied. The number of positive and negative sam-
ples used was 7500 each. We use the OpenCV implementa-
tion of the Viola-Jones detector [VJ01].

The initial vertebra detection based on the Viola-Jones de-
tector [VJ01] is done on all sagittal slices independently. If a
dataset is not acquired as sagittal slices, it is reformatted into
sagittal slices. The candidates’ in-slice positions provide the
(x,y) coordinates and approximate size (vertebral body di-
ameter) of the vertebral body candidates, the z−coordinate
of the center is derived from weighted average of slice-
adjacent candidate centers.

Note, that the result of the Viola-Jones detector is im-
perfect, containing spurious detections (false positives) and
missing vertebral bodies (false negatives); see Fig. 3.

4.2. Detection Filtering

In order to remove wrong detections and to fill missed ver-
tebrae, a spine center curve is fitted to all detected verte-
bra candidates in 3D (see Fig. 4). The S-shaped lower spine
has two distinct curvatures and therefore a third order poly-
nomial is an appropriate curve model. At this stage mis-
detections along the x-axis are more important than precise
fitting along the z-axis. Since we need robustness to false
positives we sacrifice precise fitting to the scoliotic-shaped
spine which requires a fourth order polynomial.

The distances of all vertebra candidate centers to the spine
center curve are calculated and the one with the largest dis-
tance is removed, if it is above the approximate radius of that
vertebral body candidate. Then a new spine center curve is
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Figure 4: Spine center curve fitting. Left: vertebra centers,
axes, and the fitting curve. Inset on the right: vertebra i
shown in detail (index i omitted). We use y axis as abscissa
and two polynomials dependent on it. We minimize the dis-
tances di between vertebra candidate centers ci and their
projections onto the abscissa pi using L1-norm.

fitted and the procedure is repeated for as long as there are
candidates to be removed.

The topmost and bottommost vertebra detections are fre-
quently fitted well by the polynomial, even if they are un-
wanted false positives. Therefore, we remove them in case
they are located far from the closest vertebra.

Furthermore, the frequency of candidates along the fitted
spine center curve is examined. The Theil-Sen linear esti-
mator [The92] is used to determine robustly the linear func-
tion of expected distance between vertebral body centers –
the distances increase towards the lower end of the vertebral
column. If a particular distance is below 75% of the expec-
tation from this fitting, meaning that an extraneous vertebra
is detected there, the corresponding candidate is removed.
Similarly, gaps larger than 150% of expected distance are
filled with the best-fitting number of evenly distributed new
centers. Still missing vertebrae, e.g. the top- or bottommost,
need to be added manually in the next step.

4.3. Manual Correction and Labeling

Since a correct setting of the initial vertebral body centers
is crucial for the following segmentation and diagnosis, the
result of the filtered detections is presented to the user for
verification. The user can reposition (mouse drag), add (left
click) and remove points (right click). This is done on sagit-
tal cross-sections, even if the dataset was acquired along
some other body axis (e.g. coronal). The user chooses cross-
section with a slider, and middle slice of the detected verte-
bral body centers is preselected by the program.

New vertebral body centers should be placed on a slice
which is approximately central to the vertebral body. The
size of these new vertebral bodies is linearly interpolated
from the sizes of neighboring vertebral bodies. The user also
chooses a label for the bottommost vertebra (usually S1)
from which other vertebra labels are calculated, in order to
have a correct human-readable diagnosis result.

Figure 5: Left: low image. Middle: original slice. Right:
high image. The difference between low and high values in-
dicates proximity to a boundary.

5. Segmentation of Vertebral Bodies

The segmentation of the vertebral bodies consists of a mul-
tiple features based boundary model, which is used to steer
the segmentation of the individual vertebral bodies.

5.1. Feature-Based Boundary Classification

The vertebral body boundaries are estimated using multiple
features, which are classified into probabilities of the voxel
v being at a boundary, and combined to a final probability
p(v) using the weighted average (see Fig. 6). Using multiple
classifiers and then combining them is known to improve re-
sults and robustness [KHDM98]. We apply three edge-based
and two intensity-based features. As intensity-based features
require local, per-vertebra intensity statistics, we examine a
circle with 2.8 mm radius around each of the detected ver-
tebral body centers. After removing outliers (intensities ap-
pearing only once), minimum and maximum are used for
further processing.

Due to the per-vertebra statistics, the boundary probability
map needs to be calculated for each vertebra separately. This
is done inside a bounding box which is twice as large as the
detected diameter of the vertebra.

The edge features are based on LH (low-high) val-
ues [ŠBSG06] (Fig. 5), Canny edges, and thresholded gradi-
ent magnitudes. The difference between low and high values,
L,H indicates proximity to a boundary. The boundary prob-
ability is deduced from these values and the current voxel
v intensity I by pLH(v) = ((H− I)− (I−L))/(Imax− Imin),
where Imax and Imin are the maximum and minimum inten-
sity. Note that we shift intensities so they start at 0 if it is not
the case, before any other processing is done.

Gradient magnitudes and Canny edges are multiplica-
tively enhanced using the structure tensor as described by
Fernández and Li [FL03] to improve the detection of 2-
manifold edges and suppress one-dimensional features. For
both features, the respective probability is derived by apply-
ing a distance field (DF) and a linear transform with clipping
(LTwC), see Fig. 6.

The two intensity-based features directly work on the
thresholded MRI intensities. The thresholds are taken from
the intensity statistics taken in the proximity of the detected
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Figure 6: Features explained on T12 vertebra from F02 dataset in Tab. 2. In all images except original black indicates edges,
whereas white represents more homogenous regions like a vertebral body’s interior.

vertebral body centers, i.e. the minimum and maximum val-
ues after outlier removal. Holes are filled by morphological
closing using a 3-voxel-diameter ball structuring element.

We use the binarized intensities (each voxel either 0% or
100%) as one feature. The second feature is the distance field
constructed on this binary image, effectively treating 0→1
transition as another edge feature (therefore using DF+LTwC
transformation). We thus incorporate both sharp edges (bi-
nary 0/1) and a smooth edge approach (normalized dis-
tance field) for mesh inflation. After combining the probabil-
ities, true edges usually end up having boundary probability
around 90%.

The distance field constructed on binarized intensities is
the most informative feature. After parameter optimization
(Sec. 7) it gets a weight of around 30-35% while the other
four features have around 10-20%. Some other features,
such as σ-weighted deviation from mean initialized inten-
sity, have been investigated and discarded due to small ben-
efit because of redundancy.

5.2. Segmenting Individual Vertebral Bodies

Each vertebral body is segmented using an iterative infla-
tion algorithm. The algorithm starts with a small triangular
subdivision surface mesh at the detected vertebral body cen-
ter. Its orientation is approximated by relative positions of
the neighboring centers. This mesh is enlarged using bal-
loon inflation forces [TF88,Coh91], constrained by smooth-
ness, steered towards a star-convex geometry and approxi-
mate size.

Smoothness is enforced by using a constrained subdivi-
sion surface scheme (see Sec. 5.2.2). Star-convexity is stim-
ulated by allowing the inflation only along center-vertex di-
rection. This deters self-intersections of the inflated surface.
There is also a size-goal force, which drives the segmenta-
tion towards the estimated size detected by the Viola-Jones
method (see Sec. 5.2.1).

The following steps are performed iteratively:

1. Move the mesh vertices (outwards) towards the boundary
with no regard to subdivision rules.

2. Normalize the subdivision hierarchy by moving vertices
so that they comply with subdivision rules.
The subdivision hierarchy is normalized using a combi-
nation of least squares optimal fitting and a heuristic rule
which includes smoothing as a side-effect. Smoothing is
required to overcome noisy voxels.

3. Recalculate the polyhedron center from the polyhedron
shape to account for different inflation speed in different
directions.

4. Stop when convergence is detected.

5.2.1. Inflating the Mesh

We do the inflation by examining each vertex separately. De-
pending on the boundary probability and the size-goal force,
we either inflate or deflate the vertex along the radial (center-
vertex) direction. The step size is equal to the minimum
voxel spacing, i.e. 0.5–1.1 mm for our datasets.

Initially, a vertex v is in the interior and will inflate as
long as the boundary probability p(v)< 0.5+ fsg, where fsg
is the size-goal force. When p(v) ≥ 0.5 + fsg, the sign of
the probability derivative (adjusted by the size-goal force)
δ(p+ fsg)

δ~r in inflation direction~r decides on whether to inflate
or to deflate, thereby moving the vertex towards the maxi-
mum boundary probability. By using the boundary probabil-
ity gradient only when the probability is high (vertex near the
boundary), noise inside the vertebral body does not block the
inflation. Convergence is achieved when the average center-
surface distance (“radius”) stops increasing.

fsg = κ· tanh(
rdetected− ri

rdetected
)· smin− (ri− ri−1)

smin

is the size-goal force designed to overcome local minima
which sometimes occur at smaller sizes than anatomically
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possible. rdetected is the approximate radius detected by the
Viola-Jones algorithm – the goal radius, ri is the radius in the
current iteration and smin is the the minimum voxel spacing.
κ (≈ 0.1) is a parameter steering the force influence and is
optimized for segmentation accuracy (see Sec. 7). fsg only
gives preference to a certain size, it does not guarantee it.

When ri < rdetected , fsg increases inflation pressure, and
when ri > rdetected , fsg creates deflation pressure. Out of pre-
caution this factor is limited to (-1,1) range by the tanh func-
tion.

The last factor is there to suppress the size-goal force dur-
ing normal inflation. When the radius growth between the
last two iterations is large (ri−ri−1 close to smin), this factor
lowers the influence of fsg. This is done in order to respect
the edge probabilities, and to give influence to fsg only when
the inflation enters a local minimum (small ri− ri−1) which
is far from the desired size. This factor is always positive,
because ri − ri−1 cannot be bigger than smin which is the
maximum possible step size.

If the initial center estimate for the segmentation is very
close to a boundary, the surface will inflate much more in
the opposite direction. This will result in a highly uneven
distribution of vertices over the surface, which is detected
using the standard deviation of the edge lengths (σ > 1 mm).
In this case, the segmentation is restarted at the current cen-
ter; this sometimes occurs with S1 vertebra or with some
thoracic vertebrae with low contrast, when the segmentation
leaks outside of the true vertebral body.

5.2.2. Constrained Subdivision Hierarchy

The butterfly algorithm is the simplest interpolating sub-
division scheme working on triangle meshes, i.e. a sub-
division scheme that retains vertices of coarser levels in
the refinement. The modified butterfly was presented by
Zorin et al. [ZSS96], and it avoids problems with irregular
vertices, i.e. vertices with valence 6= 6.

Our base mesh consists of a closed triangular polyhedron
with 32 vertices and 60 triangles. We create new mesh levels
through the subdivision rules until the average edge length l
is comparable to the voxel size s : s <= l < 2s, where s =

3
√sxsysz is the geometric mean of the voxel spacings.

The inflation step repositions the vertices with no regard
to the subdivision rules. Thus, we need to enforce the subdi-
vision hierarchy for all the dependent levels afterwards. We
use a global least squares optimization (Jacobi SVD), mini-
mizing the vertex position correction and edge length devia-
tion. The latter stimulates an even vertex distribution.

The number of control levels (number of levels, the ver-
tices of which are independent) is defined by how many lev-
els exist overall: ncontrol = b

ntotal−1
2 c.

If the control levels contain many vertices, overshoot-
ing effects start to appear, which is frequent in interpolat-

u0

u5 u4

u3

u2

u1

Figure 7: Heuristic hierarchy normalization adjusts posi-
tions of coarser level vertices, and then calculates positions
of dependent vertices using the subdivision rules. ui – posi-
tion updates from inflation step. u0 – control vertex. u1-u5 –
directly dependent vertices.

ing schemes. This can be reduced by using a low or mod-
erate number of vertices in the base mesh, or by applying
slight smoothing after each iteration, thus fighting noise and
small ambiguities in the data. Thus, we combine the least
squares fitting scheme with the heuristic hierarchy normal-
ization which implicitly smoothes the mesh. The influence
of the heuristic scheme is controlled by a weight parameter
which is part of the optimization (see Sec. 7).

The heuristic hierarchy normalization is based on a local
rule, which adjusts the positions of the vertices in coarser
levels until the base level has been reached. This adjustment
is based on the position update which has been applied to
each vertex during the inflation step. Basically, coarser-level
update vectors are averages of finer-level update vectors, in-
fluenced by the modified butterfly subdivision rules. The av-
eraging is formulated in a way to approximate the (non ex-
isting) inverse of the subdivision rule.

Position update vectors are propagated from finer to
coarser levels as follows (also see Fig. 7):

~uad justed = w ·~u0 +
1−w

n

n

∑
i=1

~ui, w =
1

2 ·3λ
,

where λ is the level above the finest level. The weight w is
related to the number of vertices which have contributed to
the adjustment of directly dependent vertices; it decreases
exponentially. 3 is chosen as the base because in the regular
case (valence 6), the number of vertices increases 3-fold with
each level.

6. Diagnosis

We focus on three diseases which can be diagnosed from
segmentation of vertebral bodies alone, i.e. on scoliosis,
spondylolisthesis and vertebral fractures.

6.1. Scoliosis

Normally, the vertebral column has curves in front-back
(sagittal) plane, having a shape of two concatenated letters
“S”. In the left-right direction (coronal plane), healthy spine
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Figure 8: Scoliosis is visible on coronal slices, looking at a
person from front or back. On the left is a real image (dataset
C002) with manual measurement lines. On the right is how
we calculate scoliosis using the fitted centerline and its tan-
gents at each vertebral body center. In this case: ϕ = 32.6◦.

is generally straight with only minor asymmetry – similar to
facial asymmetries. If there is a curve in the coronal projec-
tion of the spine, that condition is known as scoliosis.

According to standard clinical practice the severity is de-
termined by spinal curvature measured in degrees, called
Cobb angle [Aeb05]. Fig. 8 (left) depicts how the Cobb an-
gle ϕ is measured. If the Cobb angle is above 20◦ tracking is
warranted, and above 30◦ treatment is considered.

For determining the degree of scoliosis, we fit the spine
center curve (fourth-order polynomial) to segmented verte-
bral body centers (see Fig. 4). We evaluate the Cobb an-
gle [Cob48] between all possible pairs of vertebrae, using
tangents of the fitted curve taken at vertebra center positions.
We report the biggest Cobb angle found along with the ver-
tebrae between which it is occurring.

6.2. Spondylolisthesis

Spondylolisthesis is misalignment of vertebrae which results
in change of posture and can include pain. It is usually di-
vided into low-grade which does not usually require treat-
ment, and high-grade (above 25% [Sar87]).

Measurement of the degree of spondylolisthesis in clinical
practice S% = m

d is adapted for manual measurement on a
single sagittal slice or 2D X-ray (Fig. 9 top-left) [WW83] .

We chose to measure the degree of spondylolisthesis by
calculating the distance of vertebral body centers to the fit-
ted spine center curve and dividing it by vertebral body di-
ameter: S% = m1+m2

d (Fig. 9 right). This measure is more
robust and stable with respect to the segmentation imperfec-
tions and does not require the analysis of the shape of each
vertebral body so it is also computationally efficient.

m1 m2

m
d

Figure 9: Spondylolisthesis schematic on a sagittal slice.
The usual medical calculation method (top left) is not always
easy to apply, especially for L5/S1 pair (bottom left, dataset
S01). Right: the way we calculate misalignment (m1 +m2)
using the fitted centerline and vertebral body centers (L5/S1
misalignment=14%).

6.3. Vertebral Fracture

Crushed vertebral bodies are usually due to mechanical
stress applied to a weakened bone (typically a result of
osteoporosis). In clinical practice diagnosis is usually es-
tablished based on qualitative impression [LRDG04]. Sev-
eral different approaches have been used in medical re-
search [LRDG04], but they are tailored for manual mea-
surements based on 2D sagittal X-rays or single sagittal
slices [WLJG95].

To diagnose crushed vertebrae we fit a third-order poly-
nomial to vertebral body volumes using the L1-norm. That
way outliers do not influence the fitting, so the detection is
robust. Besides the actual volume of each vertebral body we
now also have a volume expectation V (i) = P(i), by evaluat-
ing the fitted polynomial at each vertebra index. Analyzing
the difference between them results in diagnosis. If the actual
segmented volume is below 80% of the polynomial-derived
volume expectation, the vertebra is indicated as crushed.

The 80% of expected volume parameter (20% crushed)
was obtained empirically. Crush-measure routinely reaches
10% in non-crushed (fracture-less) datasets. Average crush-
ing over all our datasets is 2.46% with standard deviation
σ =3.87%. We chose 5σ≈20% as the threshold.

7. Parameter Optimization

The Viola-Jones detector clearly relies on training data. The
rest of our segmentation system is not dependent on any kind
of training. However, since the whole system has some N =
16 parameters pi, such as thresholds or weights (see Tab. 1),
which we do not want to expose to the user, we determine
their values via an optimization process.

We define the objective function via the Dice Similarity
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Table 1: Optimized parameters.

Parameter Type Used in/for
4 image filtering radii Feature calculation
4 image filtering thresholds Feature calculation
4 feature weights Boundary estimation
4 constraint importance factors Inflation

Coefficient: f (p1, ..., pN) = ∑x∈T DSC(x; p1, ..., pN) where
T is the set of datasets used for training.

A single evaluation of the function consists of segment-
ing all the training datasets with the given parameter val-
ues and returning the sum of all DSC values. We use the
local, derivative-free COBYLA algorithm [Pow94] to max-
imize the function f . This optimization increases the aver-
age DSC by ≈1% and reduces distance error by ≈5%.The
increase comes primarily from datasets with T1 and TIRM
sequences. T2 datasets had a mix of increases and decreases.

8. Results

8.1. Evaluation Setup

We tested our method on 22 pathological datasets and 4
datasets from healthy volunteers for a total of 234 vertebrae.
13 are female and 13 male patients. 17 of these datasets are
publicly released together with this submission. Data came
from 7 different hospitals and 9 scanning stations (2 hos-
pitals had 2 each). Reference segmentations were produced
by manually tracing the vertebral body edges in the primary
acquisition plane (23 sagittal, 2 axial, 1 coronal). 10 of the
reference segmentations were done by neurosurgeons, 14 by
an experienced user (the primary author) and 2 by an expe-
rienced user under neurosurgeon supervision. The important
property of these datasets is the high anisotropy of voxel size
between 2.7× and 8.2× (see Tab. 2 and Fig. 11). Manual
segmentation time was 3-6 minutes per vertebra.

9 of those datasets, with 81 vertebrae, were used for train-
ing the Viola-Jones detector and later to optimize the param-
eters. They were chosen from the datasets we could pub-
licly release. We wanted to have in both, the training set and
the test set, varied MRI sequences, anisotropy factors and at
least one each of the three diagnosable pathologies. Other
than that, the choice was arbitrary. From Tab. 2 and Figs.12,
13 and 14 (AvgTrain and AvgTest) it can be seen that both
of these sets have very similar characteristics and results.

The variety of datasets the Viola-Jones detector can han-
dle depends on its training set. Ours has a lot of variety – T1,
T2 and TIRM sequences, and a range of TE, TR and other
parameters. But if new MRI sequences need to be handled
with low amount of errors, the detector needs to be re-trained
with the expanded training set.

To check segmentation expertise of the primary author,
one dataset (F02) was manually segmented both by the pri-
mary author and a neurosurgeon (the second author). Dice

Figure 10: Power Watersheds initialization. One cross-
section of seeds overlaid on image (dataset Ble). Blue are
background seeds, yellow are seeds of vertebral bodies. It is
noticeable on the vertebral body seeds that they have differ-
ent Z-positions (they appear to be of different sizes on this
cross-section).

coefficient is 91%, which is on par with segmentation corre-
lations between neurosurgeons [EBK∗11] (86-96% DSC).

Testing was done on a machine with Intel Core i7-920
2.67GHz quad-core processor. The average dataset process-
ing time is about 75 seconds: several seconds for the initial-
ization and median filtering (between selecting the dataset
and manual initialization correction) and the rest for feature
calculation and segmentation. The times varied from 20 sec-
onds (AKa3) to 400 seconds (case_2). The execution time
grows approximately linearly with the number of voxels.

Besides comparison to methods developed specifically for
spine MRIs, we also subjected all our datasets to the power
watersheds of Couprie et al. [CGNT09] as one representa-
tive of a general segmentation method, taking the publicly
available source code from http://powerwatershed.
sourceforge.net/. The execution time of power wa-
tersheds on a typical dataset (512×512×16) is about 20 sec-
onds. The manual initialization of this method in 3D is quite
painstaking, so we opted for automatic seed creation, derived
from ground truth data, for a thorough comparison.

One seed was placed into each vertebral body on a random
position near the center, and twice as many seeds into the
background (Fig. 10). Since background seeds were large
(20 voxel radius), they were clipped by a safety region of
interest around vertebral bodies.

Power watersheds crashed on a few datasets (with ≥10
million voxels) due to hitting 2GB memory limit (Win32).
Our old method [ZVD∗12] also crashed on Neubert’s case_*
datasets. We measured surface distance errors using the
Metro mesh comparison tool [CRS98], which incorporates
an approximate mean distance error between two meshes.

The overview of results is given in Figs. 12, 13 and
14. Datasets marked with (*) and written in italic font are
used for training the detector and optimizing parameters,
the rest only for testing. AvgTest is average of datasets
used for testing, and these numbers are reported through-
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Table 2: Information about the datasets used for the quantitative evaluation. Seq. – sequence, Sx,y – voxel spacing in x− and
y−directions (millimeters), Sz – spacing along z−axis. xyR – resolution of image along x− and y−axes, zR - z−resolution. AF
– anisotropy factor Sz

Sxy
. Path – pathologies (Sco–scoliosis, VF–vertebra fracture, SL–spondylolisthesis, +–other pathologies not

diagnosable from vertebra segmentation). NV B – number of vertebral bodies in a dataset. SB – segmented by (NS–neurosurgeon,
EU–experienced user). MVox – millions of voxels. Aiso – spacing of isotropic image with equivalent voxel volume. Datasets after
the thick horizontal line were also used in our previous work [ZVD∗12].

Dataset MRI Seq. Sex Age Sx,y Sz xyR zR AF Path. NV B SB MVox Aiso
AKa2 T2 frFSE F 21 0.7 4 512 15 5.69 + 9 EU 3.93 1.26
AKa3 (*) T1 FSE F 21 0.7 4 512 15 5.69 + 9 EU 3.93 1.26
AKa4 TIRM F 21 0.7 4 512 15 5.69 + 9 EU 3.93 1.26
AKs3 T2 frFSE F 22 0.7 4 512 25 5.69 + 10 EU 6.55 1.26
AKs5 (*) T2 frFSE F 22 0.7 4 512 15 5.69 + 9 EU 3.93 1.26
AKs6 T1 FSE F 22 0.7 4 512 15 5.69 + 9 EU 3.93 1.26
AKs7 (*) TIRM F 22 0.7 4 512 15 5.69 + 9 EU 3.93 1.26
AKs8 (*) T1 FSE F 22 0.7 4 512 15 5.69 + 9 EU 3.93 1.26
DzZ_T2 T2 TSE M 27 0.55 4.4 640 12 8.05 None 9 EU 4.92 1.1
F04 T2 TSE F 69 1.12 3 448 23 2.69 VF+ 17 EU 4.62 1.55
Hoe T2 frFSE M 58 0.63 4.4 512 14 7.04 + 8 EU 3.67 1.2
Lan T2 TSE M 79 0.78 4.4 384 13 5.63 + 9 EU 1.92 1.39
LanII T1 TSE M 79 0.78 4.4 384 13 5.63 + 9 EU 1.92 1.39
case_2 T2 SPACE M 40 0.34 1.2 641 296 3.49 None 9 AN 121.62 0.52
case_10 T2 SPACE F 47 0.34 1 636 299 2.91 None 8 AN 120.94 0.49
F02 (*) T2 SE M 51 0.5 3.85 768 18 7.7 VF,SL 9 NS 10.62 0.99
St1 (*) T2 SE M 71 0.5 3.85 704 20 7.7 St 8 NS 9.91 0.99
Ble T2 frFSE F 64 0.63 4.4 512 14 7.04 + 10 NS 3.67 1.2
C002 (*) T2 TSE F 74 1.12 3.3 448 31 2.96 Sco 13 NS 6.22 1.6
DzZ_T1 T1 TSE M 27 0.68 4.4 512 12 6.44 None 9 EU 3.15 1.27
F03 T2 TSE M 72 1.19 3.3 320 25 2.77 VF 7 NS 2.56 1.67
Geh T2 frFSE M 25 0.63 4.4 512 10 7.04 + 7 NS 2.62 1.2
LC T2 SE M 47 0.73 4.4 384 14 6.03 + 7 NS 2.06 1.33
S01 (*) T2 SE M 65 0.47 3.85 640 16 8.19 SL 7 NS 6.55 0.95
S02 (*) T2 SE F 55 0.47 3.85 640 16 8.19 SL 8 NS 6.55 0.95
Sch T2 frFSE M 42 0.63 4.4 512 16 7.04 SL+ 7 NS 4.19 1.2
Average 45 0.68 3.8 527 38 5.85 9.0 13.53 1.19
StdDev 22 0.21 0.88 104 76.5 1.69 2.1 31.79 0.27

out the paper. AvgTrain is average of datasets used for train-
ing and AvgZVD is average of datasets used in our previous
work [ZVD∗12].

8.2. Vertebra Detection Accuracy

The vertebra detection rate of our approach is 92.9% – in
other words 7.1% of vertebral bodies are not detected. Spu-
rious detections are rare – false positive rate is 1.3%. This is
a vast improvement over our old method [ZVD∗12], which
missed 21.2% vertebrae and falsely detected 2.5% on the
same test-set.

Detection of upper thoracic vertebrae was deficient, be-
cause only one of the datasets used for detector training had
vertebrae above T10 (dataset C002 also had T6-T9). Most
false positives occurred for the S1 vertebra and the upper
thoracic vertebrae, which is influenced by the low contrast

for the upper thoracic region. The S1 vertebra simply has
a significantly different geometry than lumbar and thoracic
vertebrae, which is not taken into account by our system.

8.3. Segmentation Accuracy

The mean distance of segmentation from the reference sur-
face is 1.76mm±0.38mm. In our case of anisotropic voxels,
a relative measure is deduced by dividing the distance by
the edge-length of the isotropic voxel Aiso = 3

√sxsysz. The
average Aiso for these 26 datasets is 1.19mm±0.27mm, and
relative distance is 1.59±0.79.

The average DSC of 79.3% is close to Davatzikos et
al. with 81%, but they used healthy individuals. Healthy
datasets are easier to segment and achieve better DSC. The
datasets with more severe pathologies (e.g. crushed vertebra)
have lower DSC than less noticeable pathologies (e.g. steno-
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Original Left Central Right Coronal

Legend:

Ref.
Seg.
∩

Axial

Figure 11: Overlay of reference segmentation and the one produced by power watersheds (top row) and our method (bottom
two rows). Images were cropped to save space (unimportant parts were cut off). See Tab. 2 for dataset properties. Top and
middle: dataset C002. Bottom: F03. Dice coefficients are 65%, 75% and 76%.

sis). Pathologies obviously and naturally reduce the detec-
tion rate. Using the relative distances error of 1.59±0.79, our
method can be compared to Štern et al., who report an error
of 1.85mm±0.47mm on a 1 mm3 grid. When taking into ac-
count only the mid-sagittal slice, our method achieves≈86%
DSC, which is similar to Ayed et al. at 85%. Hoad and Mar-
tel’s surgery-oriented method with thorough initialization
and manual correction of segmentation at 1.25mm±0.28mm
mean distance error remains the most precise.

Neubert kindly provided two datasets with manual seg-
mentations (case_2 and case_10), so we could directly com-
pare our method to theirs [NFS∗11, NFE∗12].

In order to have a fair comparison to Neubert et

al. [NFE∗12] their distance results should be converted into
relative distances. Aiso of 0.5mm transforms distance error of
0.67mm into a relative distance error of 1.34. This is better
than ours (1.59). Neubert et al. also have higher DSC (91%
vs our 78%). However this high quality comes at a cost of
average execution time per dataset of 5.5 hours.

When they ran their method on datasets of higher
anisotropy, their DSC was two percentage points lower: 83%
vs 85% (see [NFS∗11], dataset group I vs II). If less time
is allotted to the iterative optimization, DSC is lower: ten-
fold reduction in execution time (5.5h→35min) lowers DSC
from 91% [NFE∗12] to 85% [NFS∗11].

As our method was tailored for lower resolution routine
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Figure 12: Vertebra detection results (False Positives and False Negatives) for this and our previous work [ZVD∗12]. The new
datasets (AKa2-case_10) are more challenging.
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Figure 13: Dice scores for Power Watersheds (PW), our previous work [ZVD∗12], and current paper before (uOpt) and after
parameter optimization (Opt).

datasets, it had low precision on Neubert’s high-resolution
datasets, case_2: 2.29mm and case_10: 1.09mm. Unfortu-
nately, cross-validation with the method from Neubert et
al. [NFS∗11, NFE∗12] was not possible.

Our method is vastly superior to power watersheds for the
purpose of vertebral body segmentation in MRI. Both meth-
ods have similar execution time, but ours has higher DSC
(67% vs 79%), lower Hausdorff distance (12mm vs 36mm)
and half an order of magnitude lower relative distance error
(1.59 vs. 6.85).

In comparison with our previous work [ZVD∗12] on old
datasets (AvgZVD in Figs. 12,13,14), we now have slightly
higher DSC (79.2% vs. 77.8%) and noticeably better mean
distance error: 1.76 mm vs. 2.17 mm and relative distance
1.50 vs. 1.83. On new datasets the old method mostly fails
to segment the pathological vertebrae, and as it uses the de-
tection by segmentation approach (Fig. 12) it means that
the hardest-to-segment vertebral bodies are not taken into
account for Dice coefficients (Fig. 13) and distance errors
(Fig. 14), data points AvgTest, AvgTrain and AvgAll.

Due to parallelization, execution time is about the same in
spite of additional processing (Viola-Jones detector, heuris-
tic subdivision hierarchy normalization, size-goal force).

Moreover, the user can now intervene in case of mis-
detection of vertebral bodies at the very beginning of the
processing by adding or removing vertebra center initializa-
tion points. This ensures that all the vertebral bodies are seg-
mented, which is a significant contributor to robustness.

The majority of discrepancies between manual and auto-
matic segmentations stem from lateral slices and upper tho-
racic vertebrae (see Fig. 11). Lateral slices make it harder
to algorithmically discern a boundary due to significant par-
tial volume effects. Power watersheds mostly fail on lateral
edges of vertebral bodies, too (Fig. 11).

8.4. Diagnosis Accuracy

Our datasets had no examples of high-grade vertebral frac-
ture. Two instances of high-grade spondylolisthesis were
classified correctly, as was the only high-grade scoliosis.
There were 6 false alarms for severe crushed vertebra and 9
for severe spondylolisthesis, or 2.6% and 3.9% respectively.
There were no false alarms for scoliosis.

Overall, our system errs on the side of caution, falsely
drawing attention to non-diseased vertebrae (5.5%) and
never missing a diseased one, leading to a conservative and
robust behavior.
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Figure 14: Distance errors (in millimeters) for our previous work [ZVD∗12] and this paper. Mean – mean distance of points
in the automatic segmentation mesh from the reference mesh. Hausdorff – Hausdorff distance between segmented and refrence
meshes. Scale is logarithmic.

Diagnostic measurement errors for crushed percent,
spondylolisthesis percent and Cobb angle are 4.3 percent-
age points, 4.6 percentage points and 3◦, respectively. Rela-
tive errors (55%, 52% and 31%) are quite large because the
ground truth measurements are low (2.5%, 4% and 9.2◦).

This proves once again that high reliability of diagnosis
is not easy to achieve. Therefore the diagnosis results estab-
lished using our system can only be used as a help to the
medical professionals, and cannot replace their diagnosis.

9. Conclusion

We presented a novel method for spine segmentation in rou-
tine MRI. Our segmentation is fast and robust with respect
to the low and anisotropic resolution of routine MRI datasets
and to pathological spine and vertebra shapes. Our vertebral
body segmentation method is inflation-based and incorpo-
rates a novel constrained subdivision surface approach for
smoothness control. A multiple features boundary estima-
tor along with size-goal force provide robustness. Automatic
vertebra center detection reduces initialization time and al-
lows parallel segmentation. The segmentation takes about 70
seconds for the whole dataset.

Our method was tested on a larger set of 234 vertebral
bodies (199 from pathological, 35 from healthy datasets)
than prior work (Hoad and Martel: 30 vertebrae, Štern et al.:
75 vertebral bodies; Ayed et al.: 75 vertebral bodies, Neu-
bert et al.: 132 vertebral bodies from healthy volunteers, Da-
vatzikos et al.: 84 vertebral bodies from healthy volunteers).
Most importantly our method works on a large variety of
datasets, whereas others restrict themselves to just one type
of datasets: Štern et al. – T2 weighted, Davatzikos et al. – T1
weighted, Ayed et al. – T2 weighted, Neubert et al. [NFE∗12]
– T2 SPACE sequence, and Hoad and Martel – T1 FISP.

Open science

Together with this submission we make our program code
publicly available under an open source license, including

17 anonymized datasets with corresponding segmentations.
http://www.cg.informatik.uni-siegen.de/
en/spine-segmentation-and-analysis
A written consent was collected for every MRI study. Please
cite this paper if you use any of these in your work.
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