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Abstract

Object recoloring is one of the most popular photo-
editing tasks. The problem of object recoloring is highly
under-constrained, and existing recoloring methods limit
their application to objects lit by a white illuminant. Appli-
cation of these methods to real-world scenes lit by colored
illuminants, multiple illuminants, or interreflections, results
in unrealistic recoloring of objects.

In this paper, we focus on the recoloring of single-
colored objects presegmented from their background. The
single-color constraint allows us to fit a more comprehen-
sive physical model to the object. We show that this permits
us to perform realistic recoloring of objects lit by colored
lights, and multiple illuminants. Moreover, the model al-
lows for more realistic scene relighting. Recoloring results
on images captured by uncalibrated cameras demonstrate
that the proposed framework obtains realistic recoloring for
complex natural images. Furthermore we use the model to
transfer color between objects and show that the results are
more realistic than existing color transfer methods.

1. Introduction
Recoloring refers to the modification and adjustment of

color appearance in images. Object recoloring methods are
used in photo montage, image color correction, visual ef-
fects in movies, and also to facilitate the industrial design
by visualizing the final color appearance of the object be-
fore production. In the current work we focus on recoloring
of single-colored objects in images of medium quality as
typically encountered on the Internet.

One of the most popular color modification applications
is the recoloring of a specific object with another color or
under different lighting condition (e.g., warm-tone sunset
or cold-tone early morning). In many circumstances, it may
not be possible to create the object in the desired color or
to simulate the desired lighting condition. Another case is
when an impossible scenario is desired, for example a blue
apple, and here the choices are to either render a 3D model

Figure 1. The first row is an example of the reflectance decompo-
sition achieved by DRM [20]. Using this decomposition, object
recoloring is performed by changing the body reflectance (the sec-
ond row), and illuminant recoloring is achieved by changing the
specular reflectance (the third row).

of the scene or to simply photograph the object and then
recolor it. Recoloring should result in physically plausible
scenes and should require minimum user interaction.

Here our main objective is to develop a physics-based
method to extract the underlying reflectance model of the
object and separate the geometric characteristics from the
colors of the object and the illuminant. Such physics-based
model can then be used in order to generate an image of
the object in the same lighting and viewing angles, varying
only the object and/or illuminant colors. Fig 1 provides an
example of reflectance decomposition as well as object and
illuminant recoloring.

Images describing the underlying physical properties of
the scene such as reflectance, orientation, and illumination
are known as intrinsic images and were first introduced by
Barrow and Tenenbaum [2]. Intrinsic images are more ap-
propriate for higher-level scene analysis than the original
light intensity images, because they are less prone to scene
accidental events such as illuminant direction and color
changes. The Dichromatic Reflection Model(DRM) [20]
models the object reflectance using two chromatic coeffi-
cients: body reflectance cb, and specular reflectance cs:

f(x) = mb(x)cb +ms(x)cs, (1)

where, for each pixel x, mb and ms are the intrinsic images



describing the interaction between the light and the surface
as a function of geometric parameters such as incident an-
gle, viewing angle, and surface normal.

In this paper, we investigate the application of the single-
colored object constraint to derive the intrinsic images of a
scene. We assume a segmented mask of a single-colored
object to be given as an input. A user working in a
photo-editing environment has multiple segmentation tools
to quickly segment objects [11, 19]. This single-colored ob-
ject constraint greatly simplifies the estimation of intrinsic
images. We show that this constraint allows us to further ex-
tend the DRM to model more complex scenes with multiple
illuminants which proves crucial for outdoor scenes where
two illuminants (e.g, the sun and a blue skylight) illuminate
the object.

We propose a Multi-illuminant Dichromatic Reflection
model (MIDR), and provide an algorithm for solving the
case of two illuminants. This algorithm is then embedded
in a framework which is capable of recoloring complex ob-
jects in the presence of shadows and specularities formed
by two unknown illuminants (e.g, colored-shadows and in-
terreflections) and achieving physically plausible results for
uncalibrated natural scene images. As an additional appli-
cation we show that our framework applied to color transfer,
handles complex objects with specularity and under multi-
ple illuminant better than existing methods.

2. Related work
Intrinsic images. Several methods have been proposed to
compute the intrinsic images of Eq. 1 based on various con-
straints. A common constraint is to assume Lambertian re-
flectance (ms = 0). For this case, Weiss [27] shows that for
an image sequence assuming cb to be constant over time,
and using the prior that illumination images give rise to
sparse filter outputs, estimation of the intrinsic images is
achievable. Tappen et al. [24] show that by assuming that
shading and reflectance boundaries do not occur at the same
location the intrinsic images can be derived from a single
image.

Fewer works have concentrated on solving the case
where ms 6= 0. Klinker et al. [9] propose a method where
segmentation and intrinsic image estimation are iteratively
alternated. Within each segment a single DRM is estimated.
Hypotheses of possible illuminant and object colors are
verified for the segments and neighboring segments. This
method is further extended to include multicolored objects
in [14, 15]. The main drawback of these approaches is that
they face a chicken-and-egg problem: for a good segmenta-
tion you need approximately correct DRM parameters, and
vice versa. Furthermore, these methods are only evaluated
on high-quality images taken in controlled environments,
typically without complex backgrounds, which greatly en-
larges the hypothesis space to be checked, and limits the

probability of correct convergence.

Several highlight/specularity removal methods have
been proposed using the assumption of a known illuminant
cs and that the specular pixels have the same diffuse value
as their neighboring diffuse pixels. For example, Robbie
Tan et al. [23] proposed an iterative method for reflectance
decomposition of textured surfaces. Tan at al. [22] improve
the previous methods by adding spacial distribution and tex-
ture constraints when available. Mallick et al. [12] uses par-
tial differential equation that iteratively erodes the specular
component at each pixel.

Object recoloring. Many colorization methods have also
been used for recoloring. They mainly consist of partial
hand-coloring of regions in an image or video and propa-
gating the colored points (known as color markers or hot-
spots) to the rest of the image using an optimization algo-
rithm [10, 3]. Since these algorithms are based on the lu-
minance image they lack the additional color information
which allows to separate the Lambertian reflectance and
specular reflectance, causing them to fail in the presence
of specularities.

Color transfer methods extract the color characteris-
tics from a source image and apply it to a target image.
Many color transfer methods are based on pixels color dis-
tribution [17, 18]. Local color transfer [6, 28] and user-
interactive methods [1] try to improve the results by provid-
ing more cues. The main issue of the color transfer is that
it requires a target scene, while here we solve the case for
which no information about the target distribution is given.
Furthermore, these methods are generally applied to matte
surfaces and do not consider the presence of specularities.

The recoloring embedded in professional photo-editing
applications performs by calculating an offset in the hue and
saturation between the source and target colors. The source
image is adjusted to produce the desired color [7]. This
method is fast and capable of producing realistic results.
However, as it ignores the underlying physical reflectance,
it fails in the case of colored or multiple illuminant.

Omer et al. [16] present an image specific color represen-
tation robust to color distortion and demonstrated a recol-
oring example for a Lambertian surface. A more physics-
based approach, the closest method to our own, is a DRM
based color transfer method [21] in which the object (body)
color is estimated and transfered between images. And re-
alistic results on lab conditioned high quality images of ob-
jects under single known illuminant are presented.

Hsu et al. [8] proposed a novel method to estimate the
light mixture in a single image illuminated by two lights
specified by user while the reflectance is modeled as solely
diffuse. The method achieves good results on white balance
and light color change.



3. Object Reflectance Modeling
In this section, we describe a physics-based reflectance

model for object pixels to achieve a high quality recolored
image. We begin with an overview of the DRM and then we
extend it for the Multi-illuminant case.

3.1. Dichromatic Reflection Model (DRM)

According to Shafer, pixel values for a set of points on
a single colored surface must lie within a parallelogram in
the RGB space, bounded by body reflectance cb and the
specular reflectance cs [20]. Validity of the DRM has been
proven for a variety of inhomogeneous dielectric materials
commonly observed in natural scenes [25]. In this paper,
we assume that color changes can be modelled by a diag-
onal model, or Von Kries model, which has been proven
a sufficient approximation [4]. We indicate the illuminant
color by l, and L = diag(l) is its diagonal matrix represen-
tation. In this case the DRM can be written as

f = mbcb +mscs = mbcL +msl, (2)

where f is the RGB triple defining the color of every pixel
in the object surface,mb andms are the intrinsic images de-
noting the magnitude of the body and specular reflectance
respectively (Fig 1). The body reflectance is a multiplica-
tion of the material reflectance c and the illuminant accord-
ing to cb = cL. We assume neutral interface reflectance,
causing the specular reflectance to have the same chromatic-
ity as the illuminant color cs = l. This equation can be di-
vided into intrinsic images and the chromaticity of the ob-
ject and illuminant in matrix notation according to

f = [mb(x) ms(x)] [L c l]
T
= M CT, (3)

where x is a vector of n×2 coordinates, f is the n×3 matrix
of pixels RGB values, and the intrinsic image matrix M =
[mb(x),ms(x)] is n×2 matrix containing intrinsic images.
The color characteristics matrix C = [L c l] contains the
relevant parameters for scene recoloring. In Section 4 we
purpose methods to estimate the model parameters.

3.2. Multi-illuminant Dichromatic Reflection
(MIDR) model

Real-world objects often exhibit body and surface reflec-
tion under more than just one illuminant. An example of
multi-illuminant scenario is an outdoor scene with blue sky
and yellow sun, or a scene with indoor lighting combined
with outdoor lighting through a window. Conventional
methods often ignore the secondary illuminants present in
the scene to simplify the modelling. Here we extend the
reflectance model to the Multi-illuminant Dichromatic Re-
flection model(MIDR) to account for the secondary illumi-
nants. The MIDR for n illuminants is given by

f = [M1...Mn]
[
C1....Cn

]T
= MCT, (4)

where Mn contains the intrinsic images regarding the nth

illuminant and Cn is the corresponding color charactristics
matrix. Note that the material reflectance c remains con-
stant for all intrinsic color matrices. Due to the high com-
plexity of the model, in Section 5 we solve for a simplified
case of the MIDR model.

The dichromatic reflection model has also been extended
to include ambient lighting. Originally Shafer [20] mod-
elled ambient light as a constant offset over the scene. Later
work improved the modelling [13] and showed that the am-
bient term results in an object color dependent offset. For
the matter of simplification, in this work we assume the am-
bient illuminant to be negligible.

4. Dichromatic Reflection Model estimation
Since the introduction of the DRM multiple approaches

to solve this model have been proposed [9, 15, 23, 12]. In
this paper, we are interested in solving the DRM for the ap-
plication of recoloring single colored objects. Users inter-
ested in object recoloring work within a photo-editing en-
vironment, allowing them to quickly segment the object of
interest. This single-colored object constraint allows us to
fit a more realistic illumination model, allowing the object
to be lit by multiple illuminants.

A successful object recoloring algorithm has to face sev-
eral challenges:

• Uncalibrated images: Photo-editing software users
typically work with uncalibrated, compressed images
of medium quality and unknown settings. Most pre-
vious methods experiment on high quality calibrated
images taken in lab conditions [9, 15], and known il-
lumination [23, 12]. To handle these lower quality
images we propose a robust estimator(Section4.1).

• Complex color distribution: several existing ap-
proaches estimate the illuminant by fitting L and T-
shapes to the color distribution [9, 15]. These methods
are based on the hidden assumption that the mb is as-
sumed constant while ms is changing. In real-world
images we often face much more complex distribution
which rather form a plane.To tackle this problem we
use the illuminant estimation described in Section 4.2.

• Complex lighting conditions: the objects in real-world
images are often lit by multiple illuminants, colored
shadows, and interreflections. Ignoring these lighting
conditions would make the resulting object recoloring
look artificial. Therefore, in Section 5, we propose an
iterative algorithm to solve for two illuminants.

4.1. Robust Body Reflectance Estimation (RBRE).

For the task of body reflectance color (cb) estimation on
medium quality images we propose the Robust Body Re-
flectance Estimation (RBRE). Since object pixel values of



the non-specular part (ms = 0) form a line passing through
the origin, fitting a line through these pixels allows us to
compute cb = cL. The fitting error of an object pixel x to
a line given by the normalized vector ĉb is

e (x) =
∥∥∥f (x)− ((f (x))T ĉb

)
ĉb

∥∥∥ . (5)

Although the least squares (LS) orientation estimation
would perform well in the case that all pixels belong to the
same orientation, in our case in which there are two main
orientations (cb and l), the LS estimation will mix the two
orientations and give a wrong result. In order to avoid that,
a robust estimator [26] is constructed:

e =

∫
Ω

ρ(e(x))dx. (6)

In the current work we apply the Gaussian error norm:

ρm(e) = 1− exp

(
− e2

2m2

)
. (7)

In a robust estimator, large deviations from the model are
considered as outliers, and therefore, they are not taken into
account very heavily. While LS estimation is very sensi-
tive to outliers. In our application large deviations from the
model are mainly due to the mixing of two different direc-
tions, cbL and l. The error, Equation 6, can now be rewrit-
ten as (we will omit the spatial arguments):

e =

∫
Ω

ρm
(√

fTf − ĉTb (ff
T)ĉb

)
dx. (8)

A Lagrange multiplier is then used for minimization subject
to the constraint ĉb

Tĉb = 1,

d

dĉb

(
λ
(
1− ĉb

Tĉb

)
+ e
)
= 0. (9)

Using Equation 7 as the error function leads to

η(ĉb)ĉb = λĉb, (10)

where η is defined according to

η(ĉb) =

∫
Ω

ffTGm

(√
fTf − ĉb

T(ffT)ĉb

)
dx. (11)

The main difference with the ordinary LS estimator is that
here the matrix η is dependent on ĉb. Eq 10 can be solved
by a fixed point iteration scheme. We start iteration with
the initial estimate ĉb

0 given by the LS. Let ĉb
i be the ori-

entation vector estimate after i iterations. The estimate is
updated as the eigenvector ĉb

i+1 of the matrix η(ĉbi) cor-
responding to the largest eigenvalue, i.e. we solve

η(ĉb
i)ĉb

i+1 = λĉb
i+1. (12)

Again, points far away from the line direction ĉb are con-
sidered outliers, and therefore, do not corrupt the estima-
tion. Iterative application of Equation 12 yields the estimate
of the body reflection, ĉb. The original estimation made
by ordinary LS is refined at each iteration by changing the
weights leading the method to converge to a robust, and in
this case a much better, estimation of the ĉb.

4.2. Confined illuminants estimation (CIE)

Having the body reflectance color, there exists a set of
possible illuminants which could generate the color distri-
bution of the object. Many of these illuminants are unre-
alistic. It is shown that the chromaticity of common light
sources closely follows the Planckian locus of black-body
radiators [5]. We propose to use this constraint to estimate
the illuminant.

We sample Planckian colors (T ⊂ 1000 ∼ 40000) which
vary from orange to yellow to white to blue, resulting in a
set of illuminants {l1, ..., lm}.We define the reconstruction
error of the intrinsic images M and intrinsic color charac-
teristics C by

Er (f ,M,C) =
(
f −MCT

)T (
f −MCT

)
. (13)

Then, we perform an exhaustive search to find the best
matching Planckian light. In other words, we solve Equa-
tion 14 by choosing the Planckian light, which minimizes
the reconstruction error.

l̂ = argmin
l∈{l1,...,lm}

Er (f ,M, [cL l]) . (14)

In the next section we will outline the computation of the
intrinsic images M given C, which are needed for the com-
putation of the reconstruction error.

4.3. Intrinsic images

The estimation of the intrinsic images, given an estima-
tion of Ĉ, is based on the convex optimization problem:

minimize
M

Er

(
f ,M, Ĉ

)
subject to mb (x) ≥ 0,ms (x) ≥ 0.

(15)

Fig 2 demonstrates an example of intrinsic images recov-
ered for an object. Note that the specular reflectance is cor-
rectly separated from the body reflectance.

5. Two-illuminant MIDR model estimation
Many real-world objects are lit by multiple illuminants.

Here we propose an algorithm to estimate the case of two
illuminants. Since the problem is highly underconstraint,
we need further assumptions: Firstly, we assume one illu-
minant to be Planckian and demonstrate specularities; Sec-
ondly, specularities of the secondary illuminant to be negli-
gible. We use this as an additional constraint (m2

s(x) = 0).



Figure 2. An example of intrinsic images recovered for an object. (a) Original image; Intrinsic images: (b) Body reflectance and (C)
Specular reflectance; (d) An example recoloring result.

Note that we make no assumption on the chromaticity of the
secondary illuminant. Hence the model is given by

f = m1
bc L1 +m1

sl
1 +m2

bc L2. (16)

An iterative algorithm to solve this MIDR model is given
in Algorithm 1. First we will assume pixels to be illumi-
nated by only one of the two illuminants m1

b(x)m
2
b(x) = 0

and m1
s(x)m

2
b(x) = 0. In the final Step we remove this re-

striction to allow for pixels being lit by both illuminants at
the same time. Here, we also use the diag-function to con-
vert vectors to diagonal matrices and vice versa. First an
initial estimation is made based on all pixels on the object
(Steps 1-4) which gives us the initial values for the domi-
nant illuminant and object color. Based on this model pixels
which could be described by this model with affordable er-
ror are separated from the rest (Step 5) which are indicated
by the Mask. At each iteration the estimations and sepera-
tion mask are refined. We estimate a Lambertian reflectance
model for the pixels outside the Mask (Steps 10 and 11). It-
eratively the illuminant color estimations are refined until
convergence (Step 13). The final model estimation is then
given by the object material reflectance color c, the two il-
luminant colors l1 and l2, and the corresponding intrinsic
images m1

b , m2
b , and ms.

Although the algorithm gives good estimates for c, l1

and l2, the constraint that pixels can only be illuminated by
a single illuminant results in artificial edges in the m1

b and
m2

b estimates. In reality there are regions where both lights
illuminate the object. To solve this, Step 14 finalizes the
algorithm by keeping c, l1 and l2 andm1

s constant in Eq 16,
and estimates m1

b and m2
b constraining them to be positive.

In Fig 3 we show the results of the algorithm on an out-
door car image. The car is illuminated by a white outside
lighting as well as a greenish light caused by the light com-
ing from the grass field. The mask is given for several itera-
tions of the algorithm. The algorithm correctly separates the
two illuminants. In the last row the intrinsic images show
the estimates of the body and specular reflection.

6. Experimental results
In the experimental section we analyze our proposed al-

gorithm for MIDR estimation on synthetic images. Addi-
tionally we show some results on challenging real-world

Algorithm 1 Two-illuminant MIDR model estimation
1: Consider the whole object segment as Mask
2: Estimate cb using RBRE for the pixels x ∈Mask
3: Estimate the Planckian illuminant l1 using CIE method

4: c← diag
(
cb L1

−1
)

5: Iniciate Mask to only include the pixels x for which
Er(f(x),M

1,C1) < Threshold
6: repeat
7: Estimate c1b using RBRE for the pixels x ∈Mask
8: Estimate the Planckian illuminant l1 using CIE

method
9: c← diag

(
c1b L1

−1
)

10: Estimate c2b using RBRE for the object pixels f(x) /∈
Mask

11: L2 ← diag(c2
b)/diag(c) (using the c from Step 9).

12: Update Mask to only include the pixels x for which
Er(f(x),M

1,C1) < Er(f(x),M
2,C2)

13: until L1 and L2 estimates converge
14: Recalculate the mb

1 and mb
2 using the previous esti-

mates for c, l1, l2 and ms
1.

Figure 4. The first four images are examples of the synthetic im-
ages. The last three images are the m1

b , m2
b ,and m1

s ground truth.

images. Here we assume images are in sRGB format; and
do gamma correction. Further applications of the model are
discussed in the end of the section.

Please refer to the supplementary video for more exam-
ples of the results in real-world images.

6.1. Synthetic Images

Here we test our algorithm on synthetic images which
satisfy the assumptions, namely they are lit by two lights,
one of which is Planckian. The groundtruth intrinsic images
m1

b , m2
b and m1

s are given (Fig 4). With these we generate
a set of 60 test images by varying the illuminants and the
object color. Some examples are given in Fig 4. The sound-
ness of our algorithm has been verified on synthetic test im-



Figure 3. An example of the MIDR algorithm performance: (a) Original image; (b) Object mask as the initial Mask for the illuminant l1;
(c) The Mask after 1st iteration; (d) The Mask at 3rd (final) iteration; (e) estimated m1

b ; (f) estimated m2
b (the interreflection area,l2, has

been correctly detected); (g) estimated m1
s; (h) An example recoloring (the interreflection is preserved).

Figure 5. Effect of noise and JPEG compression: (a) and (c) ex-
amples of applying noise by sigma 4.0 and 9.0; (b) and (d) their
corresponding reconstructions; (e) and (g) examples of applying
JPEG compressions of 20% and 80%; (f) and (h) their correspond-
ing reconstructions.

Figure 6. Median angular error (in radian) as a function of: Gaus-
sian noise sigma (left) and JPEG compression (right) for cb, l1 and
l2 estimates.

ages on which the intrinsic image estimation performs with
an error close to zero even though a large part of the object
is lit by both lights simultaneously.

Since we want to apply our method to standard Internet
images, we further investigated its robustness to both Gaus-
sian noise and JPEG compression (Fig 6). The comparison
is made using the Angular Error (Ea) in radians between
the ground-truth (ĉgt) and estimated (ĉest) colors as de-

fined below,

Ea = arccos(ĉgt · ĉest). (17)

As can be seen the algorithm is sensitive to Gaussian
noise but relatively robust to JPEG compression (angular
error of all estimations for 60% compression is under 0.07
radian). To better interpret the results in the graphs we also
provide the reconstruction results on one synthetic object
for several noise and JPEG compression settings in Fig 5.

6.2. Real-world Images

Fig 8 compares MIDR-based recoloring with the one
done by hue-saturation shift method. The secondary illu-
minant (greenish interreflection) is correctly preserved by
MIDR while wrongfully changed to blue by the profes-
sional photo-editor. In Fig 9 the MIDR and DRM has been
compared for the accuracy of their recoloring results. The
secondary illuminant (bluish shadow) is well preserved by
MIDR while lost in the case of DRM. Note that here we
only modeled two illuminants and therefore the third illu-
minant (the small brownish interreflection on the back of
the car) is lost.

Note that theoretically the method fails to correctly make
the intrinsic image decomposition in the case object and il-
luminant colors are collinear. Also having no Planckian il-
luminant confuses the CIE estimator. The latter is shown in
the example of Fig 7.

6.3. Other Applications of MIDR

Here we show two other interesting applications for the
proposed framework, namely Physics-based Color Transfer
and Photo Fusion.
Physics-based Color Transfer. A popular photo-editing
task is transferring the color characteristics of an image to
another. Even though color transfer methods are often suc-
cessful in transferring the atmosphere of one image onto the



Figure 8. Comparing the MIDR method performance with a professional photo-editor: (a) Original image (containing complex interreflec-
tion); (b) Recoloring result by MIDR (the secondary illuminant,green interreflection, has been preserved); (c) Recoloring result using the
hue-saturation shift method (the green interreflection is wrongfully changed to blue).

Figure 9. Comparing the methods based on MIDR and DRM: (a) Original image; (b) Recoloring result by MIDR (zoomed area: blue
shadows have been preserved); (c) Recoloring result using DRM (missed the colored-shadows).

Figure 7. An example failure case: Here the planckian light as-
sumption is violated by having a purple light. Since purple is not
Planckian, the method wrongfully picked white as the illuminant
and purple as the object color. The recoloring shows that even
though the object itself looks realistic it does not match the scene
illumination.

other, they make unrealistic assumptions (e.g, Gaussian dis-
tribution, Lambertian objects). These shortcomings become
apparent when applied to the object color transfer. Fig 10
compares the physics-based color transfer performed using
MIDR and DRM models with the methods from [17, 18].
We apply the color transfer only to the presegmented ob-
jects. After inferring the object color and two illuminants,
MIDR successfully transfers the object color. Note that the
methods of [17, 18] mixing the illuminants and object col-
ors resulted in unrealistic images. Furthermore, the result-
ing objects exhibit different colors than the target objects.
Photo Fusion. Fig 11 is an interesting example made pos-
sible by our method. The car in Fig 3 is copied into another
scene. Here the object is recolored using the estimated in-
trinsic images. But to match the target scene, the interreflec-
tion caused by the grass is re-illuminated using the color of
the carpet simply by changing the second illuminant color
to the red of the carpet resulting in a more realistic scene
where the red carpet is reflected in the side of the car.

Figure 11. An example of photo montage: The interreflection of
the green grass (zoomed area) in the original image is re-lighted
by the red color of the carpet to match the target scene.

7. Conclusion and future work

We have presented a method for recoloring single-
colored objects based on intrinsic image estimation. The
single-color constraint allows us to fit more complex re-
flectance models which better describe real-world images.
Whereas most existing recoloring methods assume a white
illuminant, we presented a method to recolor objects taken
under colored illuminants, and the more complex case of
multiple illuminants. Results on synthetic images demon-
strate that our algorithm correctly estimates the intrinsic
parameters of the scenes. Further we show that the pro-
posed method is able to achieve physically realistic recol-
oring results in challenging real-world images. In addition
we present how our method improves other photo-editing
applications like Color Transfer and Photo Fusion.

As future research, we will investigate further ex-
tensions of the dichromatic reflection model, such as
the bi-illuminant reflection model recently proposed by
Maxwell [13]. This model allows for the modeling of ambi-
ent light which we believe could improve the quality of the



Figure 10. Comparing the Color Transfer results by DRM, and [18, 17]. (a) and (f) Original images;(b) and (g) MIDR results; (c) and (h)
DRM results; (d) and (i) results by [18]; (e) and (j) results by [17] . Note that the secondary illuminants (interreflections) on the side of the
car and the plane wing are lost in (c) and (h), wrongfully transformed in (d), (e),(i), and (j), while being preserved in (b) and (g).

recoloring for the low luminance regions of the image.

8. Acknowledgments
This work has been supported by the EU project

ERGTS-VICI-224737; the Spanish Research Program
Consolider-Ingenio 2010: MIPRCV (CSD200700018); and
the Spanish project TIN2009-14173. Joost van de Weijer
acknowledges the support of a Ramon y Cajal fellowship.

References
[1] X. An and F. Pellacini. User-controllable color transfer. Eu-

rographics, 2010. 2
[2] H. Barrow and J. Tenenbaum. Recovering intrinsic scene

characteristics from images. In A. Hanson and E. Riseman,
editors, Computer Vision Systems, 1978. 1

[3] M. Drew and G. Finlayson. Realistic colorization via the
structure tensor. ICIP, 2008. 2

[4] G. Finlayson, M. Drew, and B. Funt. Spectral sharpening:
Sensor transformations for improved color constancy. JOSA
A., 11(5), 1994. 3

[5] G. D. Finlayson and G. Schaefer. Solving for colour con-
stancy using a constrained dichromatic reflection model.
IJCV, 42, 2002. 4

[6] D. Freedman and P. Kisilev. Object-to-object color transfer:
Optimal flows and smsp transformations. In CVPR, 2010. 2

[7] R. Gonsalves. Method and apparatus for color manipulation.
United State Patent 6,351,557, Feb 26, 2002. 2

[8] E. Hsu, T. Mertens, S. Paris, S. Avidan, and F. Durand. Light
mixture estimation for spatially varying white balance. SIG-
GRAPH ’08, 2008. 2

[9] G. Klinker and S. Shafer. A physical approach to color image
understanding. IJCV, 4, 1990. 2, 3

[10] V. Konushin and V. Vezhnevets. Interactive image coloriza-
tion and recoloring based on coupled map lattices. Graph-
icon, 2006. 2

[11] A. Levin, D. Lischinski, and Y. Weiss. A closed-form solu-
tion to natural image matting. PAMI, 30, 2008. 2

[12] S. P. Mallick, T. Zickler, P. N. Belhumeur, and D. J. Krieg-
man. Specularity removal in images and videos: A pde ap-
proach. In ECCV, 2006. 2, 3

[13] B. Maxwell, R. Friedhoff, and C. Smith. A bi-illuminant
dichromatic reflection model for understanding images. In
CVPR, 2008. 3, 7

[14] B. Maxwell and S. Shafer. Physics-based segmentation of
complex objects using multiple hypothesis of image forma-
tion. CVIU, 65, 1997. 2

[15] B. Maxwell and S. Shafer. Segmentation and interpretation
of multicolored objects with highlights. CVIU, 77, 2000. 2,
3

[16] I. Omer and M. Werman. Color lines: Image specific color
representation. CVPR, 2, 2004. 2
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