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Vector Field Visualization of Advective-Diffusive Flows
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Figure 1: A drop of green dye is dripped into water. Before impact, only advection plays a role (left). Directly after impact,
the drop’s velocity, i.e. advection, still dominates concentration transport (middle), but diffusion increasingly becomes the main
mode of transport (right). Red and blue indicate advection and diffusion dominated flow, respectively.

Abstract
We propose a framework for unified visualization of advective and diffusive concentration fluxes, which play
a key role in many phenomena like, e.g. Marangoni convection and microscopic mixing. The main idea is the
decomposition of fluxes into their concentration and velocity parts. Using this flux decomposition, we are able
to convey advective-diffusive concentration transport using integral lines. In order to visualize superimposed flux
effects, we introduce a new graphical metaphor, the stream feather, which adds extensions to stream tubes pointing
in the directions of deviating fluxes. The resulting unified visualization of macroscopic advection and microscopic
diffusion allows for deeper insight into complex flow scenarios that cannot be achieved with current volume and
surface rendering techniques alone.
Our approach for flux decomposition and visualization of advective-diffusive flows can be applied to any kind of
(simulation) data if velocity and concentration data are available. We demonstrate that our techniques can easily
be integrated into Smoothed Particle Hydrodynamics (SPH) based simulations.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis—J.2 [Physical Sciences and Engineering]: Physics—

1. Introduction

Understanding the behavior of concentration transport in
fluid flows is a challenging task. There exists a wide ar-
ray of scientific visualizations to aid in gaining insight

into experimental and simulated flow data. The most im-
portant approaches are volume rendering of concentration
fields [EHK∗06], vector field visualization of advection by
means of line integral convolution [CL93], by tracing in-
tegral lines, and also by flow based surfaces [MLP∗10].
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However, so far mainly advective flows have been investi-
gated while the complex flow of concentrations inside flu-
ids, which additionally depends on diffusive flux, has not
been considered in the context of integral line visualizations
but only in direct volume rendering [KSW∗12] and visual-
ization of topological features [SKE14] of dye-advection.
Concentrations in the fluid have an impact on important
physical quantities like surface tension, which, e.g., leads
to the effect of Marangoni convection. Many real-world ap-
plications depend on the complex interplay between advec-
tion and diffusion although their respective contributions
to an observed behavior are not always clear. Our visual-
ization of advective-diffusive transport aims at filling this
gap, enabling researchers to identify and understand the
driving forces in complex transport scenarios encountered
in, e.g. microscopic mixing [KWFY99], and dynamic wet-
ting [FAB∗11].

We propose a visualization framework for advection and
diffusion based on tracing integral lines. The main idea is
to provide insight into the intrinsic structure of the concen-
tration transport consisting of both, the diffusive and the ad-
vective component. In order to combine both components
to a unified flux of concentration, we propose concepts for
decomposing the diffusive flux into a velocity and a concen-
tration part. The visualization then uses integral lines that
provide means for disclosing the intrinsic diffusive and ad-
vective components of the combined flux. The main contri-
butions of our approach are:

• A generic framework to describe arbitrary types of fluxes
that is based on the decomposition of fluxes into velocity
and concentration.
• Our decomposition of diffusive flux based on the concept

of mean and maximum diffusion velocity allows for inte-
gral line visualization of diffusive transport.
• Vector field visualization of combined advection-

diffusion processes introducing stream feathers to visu-
alize diffusion and advection simultaneously.

We apply our visualization approach to Smoothed Particle
Hydrodynamics (SPH) simulations of incompressible fluids.
In this context we contribute

• a stable reconstruction of continuous advective and diffu-
sive flux fields in SPH as required for our visualization.

Note that the proposed decomposition of fluxes and thus our
visualization approach for advective-diffusive flows can be
applied to any kind of (simulation) data as long as velocity
and concentration data are available.

This paper is structured as follows: Sec. 2 discusses the
relevant theory and related work. Sec. 3 gives a general
overview of our framework. We show how to decompose
fluxes to make them available for integral line visualization
in Sec. 4. The resulting fields can be rendered using our
novel stream feather metaphor introduced in Sec. 5. Details
of our SPH-based simulation and visualization framework

are described in Sec. 6. Results are presented and discussed
in Sec. 7. Sec. 8 concludes the paper.

2. Foundations and Prior Work

In this section we give a brief overview of advective and
diffusive flux (Sec. 2.1) and on respective visualization
techniques (Sec. 2.2). As we apply our generic advective-
diffusive flux visualization to SPH-based flow simulations,
we furthermore discuss visualization techniques applied to
SPH-fluids (Sec. 2.3).

2.1. Advective and Diffusive Flux

Advective flux carries concentration c(x) with the velocity
field~v(x) through unit area per unit time at position x as

~ja(x) = c(x)~v(x). (1)

In the presence of concentration gradients, a net transport
from areas of higher concentrations to areas of lower con-
centrations takes place. This diffusive flux is calculated ac-
cording to Fick’s law as

~jd(x) =−D∇c(x), (2)

where D is the molecular diffusivity. The total flux of con-
centration through unit surface per unit time at position x

~jt(x) = ~jd(x)+~ja(x) (3)

is the sum of advective and diffusive fluxes and follows the
direction of maximum transport [BSL07].

2.2. Visualization of Advective-Diffusive Flow

Scalar fields like concentrations are usually visualized us-
ing direct or texture based volume rendering techniques as
comprehensively described by Engel et al. [EHK∗06].

In flow visualization, line integral convolution (LIC) has
been used [CL93] in which noise textures are convolved
with vector fields. LIC has been extended by a model of
non-linear diffusion which, however, is not part of the sim-
ulation data but is, for example, applied to segment the re-
sulting flow fields [BPR01, DPR00]. Flows have also been
visualized by geometric means like tubes and ribbons that
follow integral lines. For further details we refer to the
survey by McLoughlin et al. [MLP∗10]. Illustrative tech-
niques enhance renderings by adding directional informa-
tion, by reducing cluttering or by improving depth percep-
tion [BCP∗12].

Advective-diffusive flows have been visualized using sur-
face renderings of clouds of concentration spreading. How-
ever, the diffusive part does not follow a gradient but just
extends streamlines that follow advection to cone-shaped
clouds [MS93]. Several approaches have been proposed for
visualization of diffusion tensors that describe the behav-
ior of anisotropic diffusion. Hyperstreamlines follow the
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direction of the major eigenvector of the diffusion tensor
field [DH93] and have been extended to Tensorlines to in-
crease the stability in isotropic regions where all eigenvalues
are nearly identical [WKL99]. Other approaches have em-
ployed tensor glyphs [KW06] and tensor volumes [KWH00]
to visualize diffusion tensors. None of these approaches,
however, visualized actual transport of concentrations.

Advective-diffusive flow has been visualized using di-
rect volumetric visualizations of dye-advection [KSW∗12].
Topological features of advective-diffusive flows have been
examined, however, the advection-diffusion equation has
only been solved in form of a secondary simulation step on
top of a purely advective flow [SKE14].

Our visualization approach is based on the geometric con-
struction of integral lines from advection-diffusion simula-
tion data. To the best of our knowledge, neither the effects
of diffusion nor the combined advective-diffusive transport
have been considered in the context of integral line based
visualization, so far.

2.3. Visualization of SPH Fluid Simulations

In the context of SPH-based fluid simulations, con-
centrations can be visualized using volume render-
ing [FAW10, OKK10] while surface rendering reveals the
fluid’s geometric shape [AIAT12]. SPH data can always be
visualized by sampling field quantities on a grid and ap-
plying standard techniques. However, resampling can in-
troduce artifacts in undersampled regions and increases
computational complexity in case of unnecessary oversam-
pling [SFBP09]. Pure advection has been visualized by di-
rectly rendering particle trajectories in combination with
space-time hierarchical clustering to reduce visual clut-
ter [FW12]. Vortex core lines have been visualized directly
from SPH-data using Hermite splines to interpolate between
particle positions in time [SFBP09].

As the time dependent behavior of fluids and the distinct
roles of advection and diffusion to concentration transport
cannot be captured by current visualization techniques, we
propose an integral line based approach to simultaneously
visualize advective and diffusive concentration transport. In
order to achieve an interactive visualization that does not
rely on any preprocessing or resampling, we directly com-
pute the flux-related quantities within the SPH simulation.
In this context, it is not sufficient to trace SPH particles to
deduce concentration transport comprising diffusion and ad-
vection. As diffusion is a microscopic phenomenon modeled
as concentration exchange between SPH particles, concen-
tration transport has to be traced along arbitrary, i.e. inter-
particle spacial positions.

3. Overview

Our visualization framework for advection and diffusion
using integral lines requires a velocity field and a scalar

concentration field which both may be unsteady. Firstly, in
Sec. 4 we discuss how to compute advective and diffusive
fluxes directly from velocity and concentration data without
any preprocessing. One main challenge here is the require-
ment to express a flux ~j as decomposition of velocity ~v and
concentration c, i.e.

~j = c ·~v (4)

in order to trace integral lines of fluxes. The advective flux is
already given in this form. For diffusion, however, this kind
of decomposition is not unique. We propose two different
decompositions of diffusive flux, according to the mean ve-
locity of molecules [Ein05] and to the maximum velocity, as
for instance applied in environmental sciences in the context
of the spreading of toxic waste [Sch96], which are common
interpretations to diffusive processes; see Sec. 4.1.

Using the flux decomposition in Eq. (4) and the interpre-
tations for the diffusive flux, we calculate the unified flux
consisting of the advective and the diffusive component. The
mean diffusive velocity, which follows the direction of max-
imum transport, yields the so-called total flux ~jt , and the
maximum diffusive velocity, which follows the direction of
fastest advancing concentration front, we get the maximum
velocity flux; see Sec. 4.2.

Based on the velocity components for the advective, diffu-
sive and unified fluxes we demonstrate the tracing of integral
lines over time; see Sec. 5. Integral lines are visualized geo-
metrically using stream tubes the thickness of which can be
varied, e.g. according to the transported concentration in or-
der to convey the actual magnitude of flux. As we want to vi-
sualize the relation of all three, potentially divergent fluxes,
we extend the geometric primitive of the stream tube by in-
troducing stream feathers. Stream feathers are appendages
of the integral line, i.e. the stream tube in our case, indicat-
ing the directions and magnitude of deviating fluxes.

4. A Framework for Tracing Advective-Diffusive Fluxes

The core concept of our visualization approach is an exten-
sion of the concept of integral lines in order to achieve in-
sight into multi-component, i.e. advective-diffusive fluxes.
Standard integral lines are streamlines, pathlines and streak-
lines. Even though our concept directly applies to all types
of integral lines, we focus on streamlines in this paper.

The position x(t) of samples moving along a streamline
is determined by time integration. For some initial position
x(t0) at time t0 a streamline can be traced as

x(t) = x(t0)+
t∫

t0

~v(x(t0),τ)dτ, (5)

where~v(x, t) is the flow field’s velocity. As advective flux ~ja
already is in a separated form, i.e. ~ja = c ·~va, it can directly
be used to trace integral lines over time [JH04].
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The same does not hold for diffusive flux as there is no
unique definition of a velocity which could be used to deter-
mine streamlines. In order to make diffusive flux ~jd and to-
tal flux ~jt available for integral line visualizations, they have
to be expressed in a decomposed form just as the advective
flux, i.e. as ~jd = cd ·~vd and ~jt = ct ·~vt .

Note that although the flux is unchanged by the way it is
decomposed, the resulting integral lines may depend on the
decomposition, i.e. on the velocity part.

In the following, we will discuss the decomposition of the
diffusive flux (Sec. 4.1). Afterwards we describe how to de-
rive a similar form of the unified flux in Sec. 4.2.

4.1. Decomposition of Diffusive Flux

One major challenge with diffusion is its random nature. As
diffusion arises from Brownian molecular motion, there is
no unique way to define a diffusion velocity for the decom-
position of diffusive flux [Cus09].

Assuming that solute molecules move randomly in solu-
tion in steps of ∆x length, their mean free path until a colli-
sion with neighboring molecules occurs, at a molecular ve-
locity vmol

d , then the position of molecules after some time
t can only be described in terms of density distributions.
Based on this consideration, the molecular diffusivity is de-
fined as (see also Eq. 2)

D = vmol
d ∆x. (6)

Even though movement occurs as a random process, trans-
port from areas of higher concentrations to areas of lower
concentrations is more likely than in the opposite direction
causing a net diffusive flux ~jd in the presence of concentra-
tion gradients as depicted in Fig. 2.

There are two major interpretations of diffusion related
velocity. The mean velocity considers the average speed of
diffusing molecules, whereas the maximum velocity seeks to
capture the advancing front of diffusion transport.

Figure 2: Diffusion follows the random movement of
molecules, here depicted as the black molecule trajectories.
The high concentration left of the blue plane leads to a net
flux to the right. However, there is no net flux through the
gray plane as the concentration on either side is the same.

Mean Velocity: According to Einstein, the mean velocity
depends on the local concentration as well as the concen-
tration gradient [Ein05]. At low Reynolds numbers, which
is the case for small solute molecules in solvents like water,
the mean molecular velocity of diffusion is proportional to
the force due to the gradient of the chemical potential µ as

~vmean
d =−σ∇µ =−σ

kBT
c
∇c =−D

c
∇c =

~jd
c
, (7)

where σ is a temperature-dependent friction coefficient. kB is
the Boltzmann constant and T the temperature which in our
case is also constant. As the force due to the chemical po-
tential gradient acts the same on all molecules, all molecules
are assumed to move at mean velocity in Einstein’s model,
i.e. the full concentration c is diffused resulting in cmean

d = c.
Nevertheless, in reality there will always be a fraction of
molecules that move faster than the mean.

Einstein’s model relates the mean diffusion velocity in-
versely proportional to the concentration, see Eq. 7, thus,
we encounter the practical problem that for c → 0 veloc-
ity diverges. Therefore, we bound the mean velocity by the
maximum velocity vmax

d > 0, which we will also use for the
maximum diffusion velocity.

Maximum Velocity: The maximum velocity obviously de-
pends on the diffusivity, see Eq. 6 However, even if the
molecular velocity vmol

d is known, it cannot be taken as max-
imum diffusion velocity as the free length until molecular
collision ∆x needs to be taken into account, i.e. no molecule
travels without collision. Practically, this length can hardly
be determined.

Thus, the user can control the magnitude of diffusion ve-
locity vmax

d , which is the same already used to clamp the
mean velocity in case of low concentration values. Assum-
ing a fraction of molecules moves always at this speed in the
flux direction, we deduce a corresponding concentration as

cmax
d =

∥∥∥~jd∥∥∥
vmax

d
, ~vmax

d =
~jd

cmax
d

. (8)

Comparing the mean and the maximum velocity inter-
pretation for the diffusive flux, the main difference is that
the mean velocity sets the concentration to the maximum
value, i.e. to the total concentration, whereas the maximum
velocity approach fixates the velocity. For the diffusive flux
the choice of the maximal velocity vmax

d effects the speed
a sample travels along the integral line, the line itself does
not change, except for numerical integration errors. The user
controlled maximal velocity does actually enhance the eval-
uation, as for a fixed integration time the length and thick-
ness of the diffusion streamline can be adapted. Figs. 8(c)
and 8(d) show flow fields with the diffusive flux using Ein-
stein’s mean velocity and maximal diffusive velocity, respec-
tively. However, considering the unified maximum velocity
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flux as defined in Sec. 4.2, the choice of vmax
d also influences

the direction of maximum velocity; see also Fig. 3.

4.2. Unified Model of Advective-Diffusive Flux

As we want to visualize advection and diffusion in a unified
approach, the unified flux has to be decomposed in the same
way as the diffusive flux. Similarly to the mean and maxi-
mum diffusion velocities we derive decompositions for the
unified fluxes for both interpretations of diffusion.

Unified Flux of Mean Velocity / Total Flux: In the case of
mean diffusive velocity, the whole concentration at a point
in space ct = ca = cmean

d is transported at the same velocity
which is just the superposition of the advection and diffusion
velocities. The resulting unified mean velocity flux or total
flux can thus directly be decomposed as

~jt = ct~vt = ct(~va +~vmean
d ) (9)

and follows the direction of maximum transport of concen-
tration.

Unified Flux of Maximum Velocity: In the case of a con-
stant maximum diffusion velocity, we are not actually inter-
ested in the direction of maximum transport of concentration
but rather in the direction of preferred concentration spread-
ing. Thus we do not visualize the total flux as ~jt = ~ja +~jd
but follow the direction of flux with maximum velocity

~vm =~va +~vmax
d . (10)

To find the decomposition of constant velocity flux

~jm = cm~vm, (11)

we still need to determine the amount of transported con-
centration cm in direction ~vm. As cm should be physically
plausible, we require cm ≥ 0 and compliance with the to-
tal flux in Einstein’s mean velocity consideration, i.e. for
ct = ca = cmean

d = c we require cm = c as well. Considering
Fig. 2, it is obvious that the diffusive flux changes its magni-
tude depending on the considered direction of flow through a
local plane. If we apply a linear model, the effective concen-
tration flow through a unit area with normal n̂ with respect
to the flux direction v̂ is proportional to (n̂ · v̂) [BSL07]. All
of the required properties are fulfilled by defining

cm =
max(0, v̂a · v̂m)ca ‖~va‖+max(0, v̂d · v̂m)cmax

d ‖~vd‖
max(0, v̂a · v̂m)‖~va‖+max(0, v̂d · v̂m)‖~vd‖

.

(12)
The clamping of the inner product in Eq. 12 guarantees pos-
itive contributions to concentration transport. Fig. 3 shows
the different directions of unified mean and maximum ve-
locity fluxes for ca 6= cd .

This decomposition enables us to trace integral lines of
advective, diffusive, and unified fluxes in the same way.

~jt = ~ja +~jd

~vm =~va +~vd

~vd~jd = cd~vd

~ja = ca~va

~va

Figure 3: Construction of the direction of unified maximum
velocity flux. If cd 6= ca, the directions of unified mean veloc-
ity flux ~ja +~jd and maximum velocity~va +~vd are different.

5. Visualization of Fluxes Using Stream Feathers

The final visualization uses the velocity and concentration
values deduced from the advective, diffusive and unified
fluxes. Integral lines can now be calculated which follow ei-
ther of the fluxes using numerical integration. The resulting
polylines are visualized using stream tubes which are con-
structed in an OpenGL geometry shader.

In case advection and diffusion carry concentrations in
different directions, we extend the stream tube to a novel
visualization metaphor, the stream feathers. Stream feathers
provide a convenient way to visualize additional, diverging
fluxes in a unified manner. As the unified fluxes are a combi-
nation of diffusive and advective flux, ~jt (~jm), ~ja, and, ~jd are
coplanar. If ~jd or ~ja strongly deviate from ~jt or ~jm in case

~jd
~ja
~jt

Figure 4: Stream feathers are able to capture different flux
components in an intuitive combined view. The barbs of the
feathers point in the direction of fluxes strongly deviating
from the flux visualized as stream tube.

of the mean or maximum diffusion velocity, respectively, we
draw small planar appendages like barbs of a feather to the
stream tubes pointing in the direction of the deviating fluxes
as shown in Fig. 4. This way, we are able to steer attention
to areas of strongly divergent advective and diffusive fluxes.

In order to show the flux direction, stream tubes are tex-
tured with arrows. The size and spacing of arrows is pro-
portional to the velocity of transport. The stream tube thick-
ness is scaled according to the transported concentration.
By mapping velocity and concentration to different visual
qualities, we are not only able to show the magnitude but
also the ratio of velocity and concentration of the flux. To
prevent visual clutter, feather barbs are only displayed if
the angle between fluxes exceeds a user-defined threshold
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ε > 1−
∥∥( ĵt · ĵd)

∥∥. The length of barbs is scaled with their
respective flux magnitude. Additionally, stream tubes can be
colored according to the flux that most contributes to the uni-
fied flux so that the driving transport mechanism can easily
be identified as shown in Fig. 1. We use a fix color pattern to
highlight advective (red) and diffusive (blue) contributions.

6. Advective-Diffusive Fluxes in SPH

We apply our advective-diffusive flux visualization frame-
work to SPH-based simulation. In Sec. 6.1 we give a very
brief introduction to SPH and Sec. 6.2 discusses the exten-
sion required for flux computations in SPH.

6.1. Smoothed Particles Hydrodynamics SPH

In SPH, continuous fields are described by a finite set of par-
ticles i which carry local information about field quantities
Qi, like concentration, at particle positions xi. Reconstruc-
tion of quantities at arbitrary positions x reads

Q(x) = ∑
j

Q jV jW j (x) , (13)

where Vi is the particle’s dynamic volume and W j (x) =
W
(∥∥x−x j

∥∥ ,h j
)

is a radially symmetric smoothing kernel
with finite support h j [Mon05].

Particles change their positions according to forces
acting on them. These forces include viscosity, sur-
face tension, pressure [SP09] and external forces cal-
culated by a discretized version of the Navier-Stokes-
Equation [MCG03, Mon05]. The concentration of a particle
is moved with the particle, however, particle concentrations
are changed over time by diffusion and chemical reactions.
The time rate of change of concentration c due to diffusion
follows Fick’s law as ∂c

∂t = D∇2c [ALS09], which for SPH
particle concentrations ci can be expressed as [Bro85]

dci

dt
= 2D∑

j

(
ci− c j

) Vi +V j

2
xi−x j∥∥xi−x j

∥∥2 ·∇W j(xi). (14)

Additionally, chemical reactions and surface diffusion can
be applied which result in additional concentration changes
over time as described in [OHB∗13].

6.2. Flux Calculation

We reconstruct advective flux from simulated data at arbi-
trary positions as

~ja (x) =

(
∑

j
c jV jŴi (x)

)(
∑

j
~v jV jŴi (x)

)
. (15)

We apply a corrected SPH (CSPH) formulation in order not
to underestimate field quantities in areas of neighborhood
deficiency. Here, the kernel function in Eq. (13) is corrected
by replacing W j with

Ŵ j (x) =
W j (x)

∑k VkWk (x)
(16)

yielding zeroth order consistent interpolation [BK02].

The diffusive flux first is evaluated at particle positions as

~jd(xi) =−D∑
j

(
ci− c j

) Vi +V j

2
∇W j(xi) (17)

and is then approximated at arbitrary positions using cor-
rected SPH

~jd(x) = ∑
j

~jd
(
x j
)

V jŴ j(x). (18)

7. Results and Discussion

In order to demonstrate the benefits of our novel advection-
diffusion visualization, we set up several example scenes.

The first scene simulates dripping a solute dye into a tank
of solvent (see Figs. 1, 5, 6). At first, diffusion and advection
of dye work in the same direction. After impact, advection
slows down due to water pressure and the water begins to
bounce back around the site of impact. Fig. 5 shows the ad-
vective and diffusive fluxes shortly after impact, correspond-
ing to the unified mean velocity flux on the right hand side of
Fig. 1. Diffusion transports concentration perfectly radially
away from the site of impact. Stream feathers nicely accen-
tuate areas of divergent advective and diffusive fluxes which
would have not been revealed otherwise.

(a) Advective flux with diffusion
feathers

(b) Mean velocity diffusive flux
with advection feathers

Figure 5: Stream feather visualization of advective and dif-
fusive fluxes corresponding to the unified mean velocity flux
in Fig. 1, right.

Fig. 6 shows the situation about 6s after impact when
the water is still bouncing. The advective movement clearly
slows down and diffusion dominates the total transport. At
this point in time, advection and diffusion work in the same
direction around the site of impact, hence, stream feathers
are not visible in that region. The coloring according to the
dominating flux is still able to convey the respective contri-
butions of advection and diffusion to the total transport.

In the second scene we drip pure solvent into a tank of
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(a) Advective flux with diffusion feathers (b) Unified mean velocity flux with advection
and diffusion feathers

(c) Diffusive flux with advection feathers

Figure 6: Advective, unified mean velocity and diffusive fluxes after impact of dye in solvent (see Fig. 1). Diffusion radially
transports concentration away from the site of impact and dominates the flow farther away from the impact site. Advection due
to bouncing water dominates the flow near the impact site.

(a) Advective flux (b) Diffusive flux (c) Unified mean velocity flux with advection and diffu-
sion feathers

Figure 7: Advective, diffusive and unified mean velocity fluxes at impact of a solvent drop in a tank of dye. Advection and
diffusion work in opposite direction.

solute dye as an example for counteracting advection and
diffusion. Fig. 7 shows the situation shortly after impact of
the solvent drop. At that point in time, diffusion transports
dye into the drop (Fig. 7(b)) at nearly the same velocity as
the drop’s downward advective motion (Fig. 7(a)) so that the
unified mean velocity flux nearly gets perpendicular to both
the advective and diffusive fluxes as shown in Fig. 7(c). The
stream feathers and the colored stream tubes are able to in-
tuitively convey this situation of opposite fluxes.

The third scene shown in Fig. 8 demonstrates the utility of
our visualization in a real-world application. We simulate the
mixing of solute dye and solvent in a t-sensor [KWFY99]. In
the t-sensor the dye and solvent streams on the left are accel-
erated by pressure. The two streams meet at the junction of
the t-sensor and merge to one stream which can be analyzed.

In the lower left of the t-sensor, back-diffusion of concentra-
tion in the opposite direction of the advection of the solvent
stream takes place.

A standard stream tube visualization of the velocity field
(Fig. 8(a)) can not convey the magnitude of advective flux. In
contrast, our visualization of advection (Fig. 8(b)) intuitively
shows the magnitude of transport by scaling the tube thick-
ness according to the transported concentration while the ve-
locity is captured by the arrow size and spacing. The addi-
tional stream feathers show the diverging direction of diffu-
sive flux. The visualization of maximum velocity diffusion
(Fig. 8(d)) can give insight into diffusive transport in regions
in which the Einstein model smoothes velocities (Fig. 8(c))
causing stream tubes to degenerate. In both visualizations
of diffusion, stream feathers intuitively reveal the diverging
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(a) Stream tube visualization of
the velocity field

(b) Advective flux with diffusion
feathers

(c) Mean velocity diffusive flux
with advection feathers

(d) Maximum velocity diffusive
flux with advection feathers

(e) Unified mean velocity flux
with advection and diffusion
feathers

(f) Unified maximum velocity
flux with advection and diffusion
feathers

Figure 8: Advective, diffusive and unified fluxes of the flow in
a t-sensor. Note how advective and diffusive fluxes transport
concentration in nearly perpendicular directions.

direction of advection. The unified maximum velocity flux
(Fig. 8(f)) more clearly reveals the back-diffusion that takes
place in the lower left stream compared to the visualization
of unified mean velocity flux (Fig. 8(e)). The stream feath-
ers are scaled according to the magnitude of their respective
fluxes and nicely capture the nearly perpendicular directions
of advection and diffusion.

Compared to simple glyph-based renderings our stream
tubes do not only encode magnitude and direction of flux but
can reveal the ratio of velocity and concentration of trans-
port by mapping these entities to stream tube thickness and
arrow spacing, respectively. Important additional informa-
tion is added by simultaneously showing deviating flux di-
rections as feathers. A drawback of our approach, however,
is the fact that the length of stream feathers, i.e. the flux
magnitude, and the spacing between arrows, i.e. the velocity,
cannot directly be compared.

The last scene is an artistic setup of a tank containing a
3D checker board pattern of different dye concentrations in
solvent. From above, a quad of solute dye drops into the
tank. Thus, the advection follows a classic dam break sce-
nario. The checker board pattern of concentrations in the
fluid bulk causes a distinct pattern of diffusion. Fig. 9 shows
the development of the scenario over time for three differ-
ent time steps. At first (Fig. 9(a)), diffusion and advection
take place in separated areas: Diffusion is restricted to the
fluid bulk and advection to the falling fluid quad. As soon
as the fluid quad hits the tank (Fig. 9(b)), fluid in the tank
gets displaced. Hence, the diffusive flux in the tank is super-
imposed by a strong advective flux. The regions of strongly
diverging fluxes at the edges of the checker board pattern are
again emphasized by the stream feather rendering. The red
coloring of the stream tubes clearly indicates that advection
is the driving force in the upper half of the fluid. In the lower
half, however, diffusion still is dominant. The movement of
the quad continues to displace fluid and effectively creates a
wave that travels to the right (Fig. 9(c)). The stream feathers
and the coloring still clearly indicate that diffusion plays an
important role for total transport and should not be neglected
in visualization.

All integral lines are directly computed from raw simula-
tion data using a CUDA implementation. Time integration
of streamlines has been realized using a fourth order Runge-
Kutta scheme with fixed time step for a fixed duration of
time. Streamlines have been generated from a planar grid of
seed points that can be interactively controlled by the user.
Calculations have been carried out on an Intel Core i7 930
at 2.8 GHz with 24 GiB RAM and on an NVIDIA GTX Ti-
tan with 6 GiB of VRAM. Table 1 gives timings of both our
integral line calculations and our renderings of stream feath-
ers. The timings denoted by ‘Drop’ in the table apply to both
drop scenarios. Our timings clearly show that in all scenes
we achieved interactive frame rates both for the generation
of streamlines and the rendering of stream feathers allowing
for a direct exploration of simulation data. As we operate
directly on raw data, our visualization can already be used
during simulation. The computation time for streamlines is
mainly dominated by the amount of samples along a stream-
line and not by the number of streamlines which is due to
our parallel CUDA implementation.

c© 2015 The Author(s)
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(a) t = 0.84 s (b) t = 2.21 s (c) t = 4.44 s

Figure 9: Unified mean velocity flux of the checker board scene over three time steps. The quad of solute dye (Fig. 9(a)) moves
downward and hits the surface of the tank (Fig. 9(b)) causing a superposition of the initially separated advective and diffusive
fluxes. The impact causes a wave to form (Fig. 9(c)) that travels to the right causing a strong advective flux.

Table 1: GPU timings of streamline integration and stream
feather rendering for our test scenarios. The first column
names the scenario and gives the number of simulated par-
ticles (in Mio.). Res. is the seeder plane resolution. The du-
ration (integration time) of the streamline and the stepsize
for the Runge-Kutta integration are given in Dur. and Step,
respectively. Int. denotes the calculation time for the stream-
lines and Vis. is the frame rate of rendering stream feathers.

Scene (#Mio. ptcls) Res. Dur. Step Int. Vis.
(s) (ms) (ms) (fps)

T-Sensor (0.58) 64×64 0.75 2.5 270 32

Drop (1.16)
4×4 2

5
240 60

64×64
1 145 32
2 240 16

Checker Board (1.34)
32×32

1

7.5

171 60
2 300 60

64×64
1 171 46
2 305 23

8. Conclusions

We presented a framework for simultaneous visualization
of advective, diffusive and unified fluxes based on integral
lines. The main goal is to provide insight into the intrin-
sic structure of the concentration transport and the relation
between the diffusive and the advective components. As in-
tegral lines require a velocity field, we decompose the dif-
fusive and the unified flux into a velocity and a concen-
tration part based on the concept of mean and maximum
diffusion velocity, yielding the unified mean and maximum
velocity fluxes, respectively. Using our new metaphor of
stream feathers, we can simultaneously visualize the com-
bined advection-diffusion processes.

Our proposed decomposition of fluxes and the visualiza-

tion for advective-diffusive flows can be applied to any kind
of (simulation) data which provides velocity and concentra-
tion data. We apply our approach to SPH-based flow simu-
lations and demonstrate methods for a stable reconstruction
of continuous advective and diffusive flux fields in SPH.

Benefits: Evaluating our new visualization approach shows
that it nicely reveals situations with divergent advective and
diffusive fluxes. Both approaches, the unified mean and max-
imum velocity fluxes, give clear hints to the intrinsic nature
of the superimposed concentration transport mechanisms. In
cases of high concentrations the Einstein model strongly de-
creases velocities. Here, the unified maximum velocity flux
more clearly reveals effects like back-diffusion. Thus, both
approaches complement each other in their expressiveness.

Limitations: By tracing either mean or maximum velocity
diffusive fluxes, we don’t fully reflect the random nature of
diffusion, as it statistically spreads concentrations uniformly.
In areas of high concentration and small diffusion gradients,
stream tubes of mean diffusive flux can degenerate. In this
case using the maximum velocity diffusion model can still
reveal all relevant information of diffusion.
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