
GU-DSL – A Generic Domain-Specific Language
for Data- and Image Processing

Thomas Högg1, Günther Fiedler1, Christian Köhler2, and Andreas Kolb2

1 Christ-Elektronik GmbH, Alpenstr. 34, 87700 Memmingen, Germany
thoegg@christ-elektronik.de, gfiedler@christ-elektronik.de

2 University of Siegen, Hölderlinstr. 3, 57076 Siegen, Germany
christian.koehler@uni-siegen.de, andreas.kolb@uni-siegen.de

Abstract. The complexity of image processing tasks has risen during
the last years. To counteract this trend, we introduce the novel Domain
Specific Language GU-DSL allowing to shorten the time-to-market and
improving the development process. Therefor we use some base concepts
of Java and C#, adopting the idea of encapsulating classes and flow-
models using diagrams as e.g. done by UML, but in a textual form.
Giving developers the freedom of individual modeling, the DSL forces
the developer, to adhere to special structures and requirements using
flow modeling which helps reducing recurring mistakes.

Keywords: Domain-specific languages, Modeling, Computer Graphics
and Vision

1 Introduction

The complexity of image processing tasks has risen during the last years for
several reasons. On one side, more and more industrial machines profit from im-
age processing support, e.g. by using a camera system for visual inspection. On
the other side, camera systems and the processing components (as e.g. desktop
PCs) became better and cheaper. The complexity and the demand for a short
time-to-market requires improving development processes. This can be achieved
using different methods. One method can be the usage of graphical modeling
tools as e.g. UML [5] or LabVIEW [5]. An other interesting method is the us-
age of Domain Specific Languages (DSL) allowing the design of novel problem
related programing and description languages [2]. In this technical report, we
will introduce a novel DSL based on Eclipse Xtext. It is developed from scratch,
but using some concepts from Java and C#. Furthermore, it is adopting the
idea of encapsulating classes and flow-models using diagrams as done by UML,
but in a textual form. This has the advantage to give developers the freedom of
modeling as he sees fit. But at the same time, the DSL forces the developer to
keep special structures and requirements using flow modeling. This helps reduc-
ing recurring mistakes. The DSL is specially designed to make the model-to-text
transformation as easy as possible and to support C++ as intermediate textual
representation.

We provide the following novel DSL features in this technical report:

2 Thomas Högg, Günther Fiedler, Christian Köhler, and Andreas Kolb

– A diagram based, object oriented, textual modeling language
– Class-Diagram support
– Activity-Diagram support
– An expression language allowing to implement sequential code sections within

classes, class-methods and activity-diagram nodes

The remainder of this paper is organized as follows. Sec. 2 discusses the
related work while Sec. 3 introduces our new DSL. Sec. 4 concludes this paper.

2 Related Work

Especially related to our presented approach is the work of Efftinge et. al [2].
They present Xbase as a reusable part of Xtext, allowing the usage of expres-
sions in a control flow. Furthermore, they provide full interoperability between
Java and Xbase based DSLs. This gives engineers the possibility to start the
development of new DSLs from a generic base. Our approach uses parts of the
Xbase Extended Backus Naur Form (ENBF) notation.

In 2010, Axelsson et al. [1] presented the DSL Feldspar, allowing the high-
level modeling of digital signal processing (DSP) algorithms. While using data-
flows for higher level programming, it is embedded in Haskell and uses some
optimization techniques for code generation.

Another DSL for big data analysis for telecom industries was introduced by
Senbalci et al. in 2013 [6]. It abstracts and simplifies processing to a higher level
big data solution system called Petaminer.

Fisher et al. introduced PADS in 2005 [3]. It is a DSL for processing of ad
hoc data allowing to directly describe the physical layout and semantic proper-
ties of data. A compiler generates all the required tools and libraries for data
manipulation.

Besides the previously shown related DSLs, many other DSLs exist in the
domain of data description, processing and analysis. But there is no complete
image processing DSL available at this time.

3 GU-DSL – A Generic Domain-Specific Language

The following section will introduce the main important features of GU-DSL,
allowing the implementation of image- and data-processing algorithms.

3.1 Structural Modeling using Class-Diagrams

Modern object oriented programming languages in general use classes and names-
paces to form an abstraction of real-world objects. This allows structuring soft-
ware by encapsulating functionality belonging together. As long as there are
only a few number of classes or objects, it is difficult to keep the overview.
Class-diagrams are a good tool to model complex structures. While allowing

GU-DSL – A Generic Domain-Specific Language 3

the design of individual class structures (variables and methods), they also pro-
vide the possibility to visually show object interconnections as associations or
inheritance between related classes.

We adopt this concept and allow the definition of classes, interfaces and
attributes (used to visualize meta-information). Listing 1 shows the definition of
a simple diagram with an abstract image class, an example for class inheritance
and interface implementations. This is in general well-known from languages as
C# and Java and forms the base of our system.

1 ClassDiagram ExtendingTypes
2 {
3 // I n t e r f a c e d e f i n i t i o n
4 pub l i c i n t e r f a c e IImage
5 {
6 pub l i c bool load (s t r i n g f i l ename) ;
7 pub l i c bool save (s t r i n g f i l ename) ;
8 }
9

10 // I n t e r f a c e implementation
11 pub l i c abs t rac t c l a s s Image implements IImage
12 {
13 pub l i c i n t width ;
14 pub l i c i n t he ight ;
15
16 pub l i c bool load (s t r i n g f i l ename) ;
17 pub l i c bool save (s t r i n g f i l ename) ;
18 }
19
20 // Class Extension
21 pub l i c c l a s s ExtImage extends Image
22 {
23 pub l i c void f i l t e r N o i s e () ;
24 pub l i c void smooth () ;
25 }
26 }

Listing 1 Extended class diagram showing interfaces and
class inheritance.

Besides classes, enumerations are another important kind of structure allow-
ing value grouping (Listing 2).

1 enum ImageFormat
2 {
3 Format RGB32 = 2 ,
4 Format ARGB32 = 3 ,
5 }

Listing 2 Definition of an enumeration.

Enumerations can be used as independent types as the built-in types byte,
int, float, real, string, bool and void.

Method parameters and fields can have qualifiers applied. This gives the
possibility to restrict or to grant access rights and define the visibility (Listing 3).

1 // A constant , pub l i c f i e l d
2 pub l i c const i n t i = 0 ;
3 // A protected r e f e r e n c e f i e l d
4 protected r e f r e a l j ;
5 // A pr iva t e s t a t i c f i e l d
6 pr i va t e g l oba l i n t g = 100;
7 // A pub l i c constant r e f e r e n c e to a s t a t i c f i e l d
8 pub l i c g l oba l const r e f i n t k = r e f g ;
9 // A pub l i c s t a t i c method

10 pub l i c g l oba l void memcpy(r e f void dst , r e f void src ,
11 in t numBytes) ;

Listing 3 Field, method and parameter access qualifiers
and visibility.

4 Thomas Högg, Günther Fiedler, Christian Köhler, and Andreas Kolb

To allow modeling of meta-information, e.g. to support a more flexible code
generation, we introduce attributes (comparable to C# attributes and Java an-
notations, see Listing 4).

1 ClassDiagram Att r ibute s
2 {
3 pub l i c a t t r i bu t e CppType
4 {
5 pub l i c s t r i n g name ;
6 }
7
8 pub l i c a t t r i bu t e Gene r a t o rV i s i b i l i t y
9 {

10 pub l i c bool v i s i b l e = true ;
11 }
12 }

Listing 4 Definition of generator attributes.

Attributes can be used on classes, methods, fields and enumerations (see
Listing 5).

1 [Att r ibute s . Gene r a t o rV i s i b i l i t y (v i s i b l e = f a l s e)]
2 pub l i c abs t rac t c l a s s Image{}

Listing 5 Definition of generator attributes.

Until now, we can only define the general structure of all the necessary ob-
jects. Using associations well-known from the graphical UML modeling, we allow
the developer to define relations between objects. This is simply done by defining
fields in classes, as can be seen in Listing 6.

1 // Image conta ins 0 . . to n sub images
2 s e l f aggregat ion [0 . . *] subImages : Image ;
3
4 // At l e a s t one or more p i x e l belong to an image
5 s e l f composit ion [1 . . *] p i x e l : P ixe l ;
6
7 // B i d i r e c t i o n a l a s s o c i a t i o n : Image conta ins
8 // 0 to n p i x e l . One p i x e l be longs to one image
9 s e l f [1] conta ins : P ixe l [0 . . *] ;

10
11 // A uni−d i r e c t i o n a l a s s o c i a t i o n : A p i x e l
12 // has a parent , but the parent does not know i t
13 s e l f parentImage : Image ;

Listing 6 Association types.

Besides simple classes, interfaces and enumerations, we support class- and
interface-templates as well as reference types. Using these definitions, we are
able to exemplary model a complete structural representation of image- and
data-processing algorithms.

3.2 Definition of Behavior Modeling

The second important part is the definition of object and system behavior.
UML provides several kinds of diagrams (activity-, state-machine or sequence-
diagrams). Our approach uses two incorporating methods. The first one uses
an expression language (similar to XBase [2]), allowing sequential coding and
lowering the barrier to using our presented approach. A second method uses
an extended activity-diagram allowing flow-modeling. The diagram fully sup-
ports and incorporates the expression language to solve the main drawback of
rapidly rising visual complexity of pure activity-diagram modeling, as stated in
the introduction.

GU-DSL – A Generic Domain-Specific Language 5

3.3 Behavior Modeling using Expressions

As mentioned previously, our expression language uses the base concepts of
XBase and other well-known programming languages. It is based on the types
introduced in Sec. 3.1 and is specially designed in a way to make the text-to-
text (T2T) transformation (code generation) as easy as possible. It has special
domain-specific extensions, e.g. references to improve algorithm performance.
The next sections will introduce the most important expression features.

Variable Expressions The expression grammar allows three types of variables
declarations:

1. Mutable variables, defining variables that can be changed:

1 var i n t i = 0 ;
2 var Image image ;
3

2. Constant variables, defining variables that cannot be changed:

1 const i n t j = 0 ;
2

3. Reference variables, as known from C/C++ as pointers, allowing direct ac-
cess to memory addresses:

1 var r e f i n t k = 0 ;
2 var r e f Image image ;
3

Reference variables are treated in a special way, different from the C/C++
dereferencing mechanism. Depending on the assigned value type, the kind of
assignment is automatically chosen (see Listing 7).

1 var i n t i = 0 ; // Declare va r i ab l e i
2 const i n t j = 0 ; // Declare constant j
3 var r e f i n t k = r e f i ; // Ass igning i as
4 // r e f e r e n c e to k
5 k = 100; // Ass igns 100 to k ,
6 // and r e s p e c t i v e l y to i
7 k = j ; // Ass igning the content
8 // o f j == 0 to k
9 k = r e f j ; // Ass igning the j as

10 // new r e f e r e n c e to j

Listing 7 Reference assignment and automatic
dereferencing.

Using this mechanism simplifies the language usage and improves maintain-
ability. Additionally, through the support of references, it is possible to develop
fast code, which is the most important requirement in image processing algo-
rithm development.

6 Thomas Högg, Günther Fiedler, Christian Köhler, and Andreas Kolb

Loop Expressions Loops are a central part of programming languages, allow-
ing simple repetition of statements. We support three kinds of control structures.

1. Head-controlled loops:

1 loop (i < 100) { i = i +1; } ;
2

2. Tail-controlled loops:

1 do { i = i + 1 ; } loop (i <= 100) ;
2

3. Conditionally head-controlled loops:

1 f o r (i = 0 : 1 : i < 100) { } ;
2

Conditional Expressions Besides loops, we also support two kinds of condi-
tional expressions:

1. If-Else-expressions:

1 i f (i < 100) { k = 0 ; }
2 e l s e { k = 1 ; } ;
3

2. Switch-Case-expressions:

1 switch i :
2 {
3 case 0 : {}
4 de f au l t : {}
5 } ;
6

Other Expressions The previous sections introduced the most important ex-
pressions of our language. But the language also supports basic expressions as
assignments (=), equality checks (==, ! =), logical operations (&&,&, ||, |), com-
parisons (>=, <=, >,<) and expression grouping in blocks ({}) that are used
in the same way as in C/C++.

All the expressions previously described can be attached to class methods
to allow behavior modeling using expressions. Furthermore, we allow, using the
grammar in activity-diagram nodes introduced in Sec. 3.4.

GU-DSL – A Generic Domain-Specific Language 7

3.4 Behavior Modeling using Activity-Diagrams

The previous section introduced our expression language allowing simple textual
behavior modeling. This section shows how to use textual activity-diagrams to
give the developer the possibility to abstract algorithms or behavior in a more
object oriented manner. Activity-diagrams provide an easy way to model data
flow or single system parts. They support concurrency, conditional decisions
and also loops. We extend the UML activity-diagram by the following features
to make them more reusable:

– Class-assignments

– Diagram input parameter (as in UML 2.x)

– Activity-diagram variable definitions

– Action-node definition

– Expression support within nodes

Activity-diagram

Variable section

Swimlane section

Swimlane 1 Swimlane 2 Swimlane n

Fig. 1: The two sections of an activity-diagram.

As can be seen in Fig. 1, an activity-diagram consists of a variable section
defining local variables and an arbitrary number of concurrent swimlanes. Our
approach assumes that an activity diagram describes the flow within a class
method and is called as shown in Listing 8.

1 c a l l behavior AdMemberAccess (”C:\\ example . png” ,
2 ”C:\\ e xamp l e f i l t e r e d . png”) ;

Listing 8 Call of an activity-diagram.

Listing 9 shows an example diagram containing important diagram features,
which are described in the next sections.

8 Thomas Högg, Günther Fiedler, Christian Köhler, and Andreas Kolb

1 ActivityDiagram AdMemberAccess (s t r i n g fi lenameLoad ,
2 s t r i n g f i l enameSave)
3 {
4 // Diagram s p e c i f i c va r i ab l e d e c l a r a t i on s
5 pub l i c i n t i = 0 ;
6
7 swimlane Swimlane1 , owner ExtendedBaseTypes . Image
8 {
9 s t a r t S1 { => load (f i lenameLoad) ; }

10
11 // The act ion r ep r e s en t the load method
12 // o f the Image c l a s s
13 act ion load (s t r i n g name)
14 {
15 i = 0 ;
16 => f i l t e r Imag e ;
17 }
18
19 // A simple act ion−node doing some f i l t e r i n g
20 act ion f i l t e r Imag e
21 {
22 i = i + 1 ;
23 // Do some f i l t e r i n g
24
25 // Recurs ive node c a l l ==> lowwop
26 [i < 10] => f i l t e r Imag e ;
27 // Cal l the save method
28 [i >= 10] => save (f i l enameSave) ;
29 }
30
31 // The act ion r ep r e s en t the save method
32 // o f the Image c l a s s
33 act ion save (s t r i n g name)
34 {
35 => Fin i sh ;
36 }
37
38 f i n a l F in i sh
39
40 }
41 }

Listing 9 An example activity-diagram.

Class-assignments Our implementation allows assigning owner classes to ei-
ther a diagram or to the individual swimlanes. This offers the possibility to
directly interact with classes. It provides access to all class member variables
and methods as can be seen in Listing 9 (load- and save-node).

Diagram input parameter The UML defines activity diagram input and
output parameters as well as objects, which is an essential extension to allow
the re-usage of diagrams. Listing 9 shows the re-usage of these parameters as
object flow between nodes.

Activity-diagram variable definitions Another newly introduced feature is
the usage of local variable definitions. Class-assignments allow access to class
member-variables. But in most cases, this isn’t enough. We allow the definition
of local variables that can be used in the same way as member variables for
transition guards and also within expression statements.

Action-node definition Action-nodes are the main modeling nodes. They
provide the basic functionality and allow visualizing all kind of problems. The
connection between nodes is realized as either guarded or non-guarded transi-
tions. This provides the possibility to model conditional and loop flows, but most
of the time it is complicated and confusing. UML has already introduced special

GU-DSL – A Generic Domain-Specific Language 9

kinds of nodes such as forks, joins and decisions. But from our point of view,
it is not enough to provide a simple programming interface. Our additional and
extended node types are introduced in the following sections. Furthermore, we
allow three different kinds of action-node declarations. The first one represents a
method call of an assigned class (e.g. load or save in Listing 9), while the second
method (filterImage) shows the possibility of defining collections of expression
statements. The third possibility is defining action-nodes that are assumed to
be a method call, but they don’t have to be members of a class. Having the
same signature as method-call nodes, they are treated in a special way by the
code generator. This allows the reduction of generated code by reusing them in
a second occurrence as a simple method call.

Other node-types Besides the introduced new nodes, we also support start-,
final-, decision-, fork- and join-nodes.

3.5 Summary

This section has shown the most important specifications of GU-DSL, which
allow for modeling of computer-vision algorithms and are also the basis of our
planned graphical modeling framework. Required class- and activity-diagram-
declarations and also expressions have been introduced and their basic usage
was demonstrated.

4 Conclusion And Future Work

In the previous sections we introduced a new domain-specific language, allowing
developers and modelers to design data and image processing applications. The
modeling toolchain to design the DSL is based on Eclipse-Xtext to design the
DSL. In combination with our code generator and the high level abstraction
C++ framework, it is possible to easily develop image processing filters, e.g. a
bilateral filter or even more complex processing methods.

In the future, we plan to extend the language by graphical editors and
other important diagram types such as object-, state-machine- and component-
diagrams. Especially component diagrams allow the re-usage and encapsulation
of recurring image processing problems while reducing implementation time. In
combination with the work proposed in this paper, the quality of such software
systems and their time-to-market can be improved significantly. Furthermore, we
plan to add a full validation system using OCL (Object Constraint Language) in
combination with EVL (Epsilon Validation Language) [4]. This can additionally
improve the quality by the interactive help for the developer showing problems
directly during design. Besides development support, we also want to extend the
system by an interpreter and the possibility to use the Eclipse Debugger Support
via GNU Debugger (gdb).

10 Thomas Högg, Günther Fiedler, Christian Köhler, and Andreas Kolb

5 Acknowledgment

This work was supported by the German Research Foundation (DFG) as part
of the research training group GRK 1564 ’Imaging New Modalities’.

References

1. Axelsson, E., Claessen, K., Devai, G., Horvath, Z., Keijzer, K., Lyckegard, B., Pers-
son, A., Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: A domain specific lan-
guage for digital signal processing algorithms. In: Formal Methods and Models for
Codesign (MEMOCODE), 2010 8th IEEE/ACM International Conference on. pp.
169–178 (July 2010)

2. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hasselbring,
W., Hanus, M.: Xbase: Implementing domain-specific languages for java. In: Pro-
ceedings of the 11th International Conference on Generative Programming and Com-
ponent Engineering. pp. 112–121. GPCE ’12, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2371401.2371419

3. Fisher, K., Gruber, R.: Pads: A domain-specific language for processing ad hoc
data. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 295–304. PLDI ’05, ACM, New York,
NY, USA (2005), http://doi.acm.org/10.1145/1065010.1065046

4. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Rigorous methods for software construc-
tion and analysis. In: Abrial, J.R., Glässer, U. (eds.) Rigorous Methods for Software
Construction and Analysis, chap. On the Evolution of OCL for Capturing Struc-
tural Constraints in Modelling Languages, pp. 204–218. Springer-Verlag, Berlin,
Heidelberg (2009)

5. OMG: Uml (November 2014), http://www.uml.org/
6. Senbalci, C., Altuntas, S., Bozkus, Z., Arsan, T.: Big data platform development

with a domain specific language for telecom industries. In: High Capacity Opti-
cal Networks and Enabling Technologies (HONET-CNS), 2013 10th International
Conference on. pp. 116–120 (Dec 2013)

http://doi.acm.org/10.1145/2371401.2371419
http://doi.acm.org/10.1145/1065010.1065046
http://www.uml.org/

	GU-DSL – A Generic Domain-Specific Language for Data- and Image Processing
	Introduction
	Related Work
	GU-DSL – A Generic Domain-Specific Language
	Structural Modeling using Class-Diagrams
	Definition of Behavior Modeling
	Behavior Modeling using Expressions
	Variable Expressions
	Loop Expressions
	Conditional Expressions
	Other Expressions

	Behavior Modeling using Activity-Diagrams
	Class-assignments
	Diagram input parameter
	Activity-diagram variable definitions
	Action-node definition
	Other node-types

	Summary

	Conclusion And Future Work
	Acknowledgment

