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Abstract

In this paper, we provide a new, real photo dataset with
precise ground-truth for intrinsic image research. Prior
ground-truth datasets have been restricted to rather sim-
ple illumination conditions and scene geometries, or have
been enhanced using image synthesis methods. The dataset
provided in this paper is based on complex multi-illuminant
scenarios under multi-colored illumination conditions and
challenging cast shadows. We provide full per-pixel intrin-
sic ground-truth data for these scenarios, i.e. reflectance,
specularity, shading, and illumination for scenes as well as
preliminary depth information. Furthermore, we evaluate 3
state-of-the-art intrinsic image recovery methods, using our
dataset.

1. Introduction

One of the main goals in the image processing research,
from the early days until now, is the ability to describe
the scene in terms of “intrinsic” characteristics like depth,
shape, surface orientation (normals), incident light, and re-
flectance at each visible surface point [4]. Each of these
intrinsic characteristics provides us with valuable cues for
scene understanding. Several methods have been proposed
which tackle different aspects of this problem in an image-
based manner, i.e. utilizing image-based scene represen-
tations with a fixed camera pose. While color constancy
methods are more interested in the chromatic value of the
incident light on the object surface, intrinsic image estima-
tion methods try to separate the effects of the lighting and
scene geometry from the object’s reflectance, i.e. its color
and texture.

A major difficulty for intrinsic image research is getting
access to datasets of images which depict realistic scenar-

ios, and provide precise ground-truth information regard-
ing all intrinsic scene parameters, i.e. reflectance, specular-
ity, shading, and illumination. This kind of datasets allows
the evaluation of the performance of any intrinsic image
method, as well as providing training data for these algo-
rithms. The first reliable dataset is published by Grosse et
al. [15], known as the MIT dataset. While the MIT dataset
has paved the way for many recent intrinsic image methods,
it suffers from limitations like: simple lighting condition (a
single white light source with no ambient lighting, no col-
ored interreflections, no colored lighting edges, no colored
shadows, and very little specularities), simple toy objects
with limited color and texture, and no geometry data.

Recently Barron et al. [2] have synthetically rendered the
MIT images to provide more complex lighting. In their later
work [3], they have also featured synthesized range (depth)
data for the MIT dataset with synthesized Kinect-like noise,
and shown the value of such complimentary information
about the scene in improving the performance of intrinsic
image recovery. Furthermore, they have provided results
on the NYU dataset [21] for which range data, but no real
intrinsic image ground-truth is available.

In the current work, we provide a new, real-photo
ground-truth dataset applicable to intrinsic image research,
which strongly improves over the existing ones in terms of
illumination and scene complexity, and which includes full
intrinsic ground-truth data. Inspired by Grosse et al. [15]
and Beigpour et al. [6], our approaches to scene setup, data
acquisition, and ground-truth determination comprise the
following contributions, addressing new challenges in the
field which were previously not considered:

• Creation of the first reliable multi-illuminant real-
photo dataset for the purpose of intrinsic image re-
search presenting complex geometry, multi-colored
non-uniform lighting, large specularities, and chal-
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Figure 1. Schematic example of the setup: Scene with colored objects (left) and geometrically identical with objects painted in gray (right).

Figure 2. The scenes: We have designed five scenes with complex geometry and shading effects. Here we show the colored scene versions.

lenging colored shadows.

• Precise per-pixel ground-truth of reflectance, specular-
ity, shading, and illumination for scenes under multi-
colored illumination conditions.

• Preliminary depth information of the scene on a coarse
resolution level.

• Evaluation of 3 state-of-the-art intrinsic image recov-
ery method using our dataset.

The main contributions of the proposed dataset over the
MIT dataset are that it features: colored light, non-uniform
multi-colored illumination (e.g., challenging colored cast
shadows, color variations of the incident light dependent
on the surface normal) with pixel-wise accurate ground-
truth, large specularities, a preliminary depth map, as well
as adding more complexity to the scene geometry (e.g.,
scenes contain multiple objects with very different geome-
tries). Thus, our dataset enables advanced evaluations of
existing and future intrinsic image algorithms.

The reminder of this paper is organized as follows: Sec-
tion 2 summarizes the related work; Section 3 provides de-
tails on our dataset acquisition and ground-truth calculation;
a benchmarking of state-of-the-art using our dataset is given
in Section 4; Section 5 discusses challenges and future work
followed by conclusions in Section 6.

2. Related work

In this section we briefly explain the image formation
model, which is fundamental for the intrinsic images con-
cept (Sec. 2.1). Afterwards, we summarize the related work
in intrinsic image dataset creation (Sec. 2.2) as well as the
intrinsic image recovery methods (Sec. 2.3).

2.1. Image Formation Model

Recovering the intrinsic characteristics of the scene
based on acquired imagery is a highly complex problem,
which requires a model of the image formation as such.
These models often use an image space representation, i.e.
all characteristic parameters are given in image coordinates
denoted by x.

One of the early models for image formation is the
Dichromatic Reflection Model (DRM) [24], which decom-
poses the image I into its diffuse and specular components:

Ic (x) = md (x)

∫
ω

b (λ,x) e (λ,x)ρc (λ) dλ (1)

+ms (x)

∫
ω

i (λ) e (λ,x)ρc (λ) dλ,

where e(λ,x) represents the energy of the incident light,
and b(λ,x) is the surface albedo. We integrate over the
wavelength λ of the visible spectrum ω. ρc(λ), c ∈
{R,G,B} denotes the spectral sensitivity of the camera
(sensor) for the R, G, and B channels. We will omit the
channel superscript c without loss of generality. The achro-
matic terms md(x) and ms(x) summarize the geometric
dependence of the reflected diffuse and specular light, re-
spectively, to the view angle, direction of the incident light
and the surface normal for the observed scene location re-
lated to the image location x.

A common assumption is the neutral interface reflection,
i.e. the Fresnel reflectance i is independent of λ and can be
omitted from Eq. 1 as it is a constant factor. Note that in-
trinsic image decomposition methods only provide shading
and reflectance values up to a constant scalar multiple of the
real values [15].

Later work has extended this model to account for
non-uniform illumination, e.g. by considering shadows.



Maxwell et al. [20] formulate a multi-illuminant image as
a linear combination of images under different illumination
conditions. In their work, they focus on ambient illumi-
nation as they are mainly interested in chromatic shadows.
However, considering Eq. 1, variations in the color of the
incident light can be accounted for directly, as e(λ,x) can
encode the spatially varying information depending on the
image coordinate.

In the case of the MIT dataset [15], the illumination is
homogeneous and white, leading to e(λ,x) = const in
Eq. 1, i.e. it is independent of the wavelength and the posi-
tion. Using the assumption that the image of the object can
be modeled as a linear combination of shading, reflectance,
and specularity, Grosse et al. [15] simplify the representa-
tion of the model to its main components:

I(x) = S(x)R(x) + C(x) , (2)

where S, R, and C represent the shading, reflectance, and
specular components respectively. We refer readers to the
work of Grosse et al. [15] for further explanation.

2.2. Datasets

As mentioned in the previous section, the MIT dataset
by Grosse et al. [15] is the main resource for intrinsic im-
age research. It is constructed from single-object scenes
and white illuminant scenario with precise reflectance, and
shading ground-truth. Further work by Barron et al. [3]
used synthetic rendering on top of the MIT dataset in or-
der to achieve more complex multi-illuminant ground-truth
data, as well as depth information. Beigpour et al. [6] also
extends the MIT concept to account for non-uniform illu-
mination, but their approach is solely based on synthetic
image generation for scene geometry and image formation,
whereas the illumination data is synthesized from real light
spectra. Furthermore, they provided a thorough study of
state-of-the-art in intrinsic image recovery, but the data does
not account for noise, scenes are entirely diffuse, and no
depth information has been provided. Some color constancy
datasets have targetd multi-illuminant scenes [14, 5, 31] but
do not provide any shape and reflectance ground-truth.

Recent advances in the field of computer graphics based
on physically motivated models produce realistic-looking
images and, thus, have encouraged researches to use syn-
thetic data as ground truth. In general, replacing real-world
measurements by synthetic, computer generated imagery
(CGI) is problematic in two ways. First, the photometric
consistency of CGI compared to equivalent real-world im-
agery has yet to be validated. Considering image foren-
sics, several methods exist that can classify photo-realistic
CGI from real photos with more than 90% accuracy [28].
Second, there is a strong overlap between the models used
for rendering CGI and physics-based models used by intrin-
sic image methods. Thus the evaluation of different meth-

ods using synthesized data is potentially biased in favor of
methods which rely on similar models as to which the syn-
thesized data has been created.

The creation of a real multi-illuminant intrinsic image
dataset with complete ground truth involves laborious, time
consuming, and very precise procedure as well as expertise
in the field. This paper takes on the challenge of providing
such a dataset which extends over the MIT dataset in terms
of complexity of the illumination and scene geometry, along
with its full intrinsic ground-truth data.

2.3. Intrinsic Image Estimation Methods

Many works in intrinsic image recovery have been pro-
posed in the literature. The earlier approaches relied on
the assumption that the reflectance changes produce sharp
edges, while shading changes are smooth [18]. Considering
that the object reflectance is independent of the illumina-
tion, Weiss [29] has used several images of a scene under
different lighting conditions to solve this problem. Entropy
minimization, e.g. Finlayson et al. [10], and learning-based
approaches, e.g. Tappen et al. [27], have proven to be ad-
vantageous. Non-local texture constraint [25], integration
of local luminance amplitude with hue and texture [16], and
image clustering [12] further improved the results.

Use of sparse reflectance priors has resulted in strong im-
provements in performance and results in the works of Shen
et al. [26] Gehler et al. [13] and Serra et al. [23]. Bar-
ron et al. [2] combine priors on the local smoothness and
global sparsity of the reflectance with priors on shape (flat-
ness, outward-facing orientation at the occluding contour,
and local smoothness).

In section 4 we evaluate some of the most recent meth-
ods in this field by Gehler et al. [13], Serra et al. [23] and
Barron et al. [2] on our multi-illuminant real-photo ground-
truth dataset.

3. Dataset and Ground-Truth Acquisition
The main contribution of this work is providing a dataset

of images of real objects lit in complex, non-uniform, multi-
colored lighting conditions with precise ground-truth, i.e.
the Lambertian reflectance and shading as well as specular-
ity. Furthermore we provide pixel-wise accurate color of
the incident light on the objects. Our complete dataset is
publicly available online1.

Our work is inspired by works of Grosse et al. [15] and
Beigpour et al. [6]. But it differs from the former mainly in
that it present complex multi-colored lighting in the scenes
with precise pixel-wise ground-truth as well as depth in-
formation. The latter has also provided the multi-colored
lighting, but only on synthetic data. In this section we ex-

1http://www.cg.informatik.uni-siegen.de/data/
iccv2015/intrinsic

http://www.cg.informatik.uni-siegen.de/data/iccv2015/intrinsic
http://www.cg.informatik.uni-siegen.de/data/iccv2015/intrinsic


plain in detail our framework for capturing the images and
extracting the ground-truth information.

3.1. Scene Setup

Our dataset consists of 5 distinct scenes, each of which
contains two colorful objects with complex geometry; see
Fig. 2. A schematic example of a scene is given in Fig. 1.
Lighting in each scene is provided using a DC-950 regu-
lated illuminator with a 150W quartz halogen light source
fitted with an IR filter. The intensity of the light can be
controlled. Using a dual branch fiber optics light guide, the
light is directed through two filter-wheels fitted with color
filters.

One wheel is mounted on the scene’s ground level at the
front-left side and is equipped with a set of orange (’O’),
yellow (’Y’), and white (’W1’) filters, and the other wheel
is mounted on the top-front-right side of the scene and is
equipped with a set of blue (’B’), green (’G’), and white
(’W2’) filters. W1 and W2 are results of two neutral density
filters with different levels - in order to regulate the scene’s
brightness - but have the same chromaticity. Each of these
wheels act as a separate light source. The spectra of each
of the individual illuminants, i.e. light source plus filter, is
given in Fig. 3.

Using the combination of filters, we produce a set of 15
lighting conditions L = {`1, ..., `15} consisting of 9 two-
illuminant and 6 single-illuminant (by blocking one of the
sources) lighting conditions. In the following, we denote an
illumination condition as

LR with

{
L ∈ {O, Y, W1, N} (left filter color)
R ∈ {B, G, W2, N} (right filter color).

Thus, OB stands for orange from left and blue from right.
We use ’N’ to indicate absence of an illuminant, e.g. NB
means blue illuminant from right while the left source is
blocked. The position of the two light sources are rigidly
fixed in relation to the scene and the camera.

In order to represent the complexity of natural scenes,
our scenes feature different types of surfaces and geome-
tries, e.g. flat, curved, sharp or smooth edges, as well as var-
ious types of reflectance, e.g. uniformly colored and sparse
scribbles. The illumination in the scenes resulted in both
soft shadows and shadows with sharp edges, as well as
smooth blending of differently colored illuminants over a
curved surface. Fig. 4 presents an example of the lighting
conditions of an acquired scene.

3.2. Data Acquisition and Calibration

The scene is captured using a Nikon D300 camera cou-
pled with a Kinect version 2 Time-of-Flight (ToF) depth
camera. The two cameras are rigidly attached together at
about 8 cm distance, so the relative transformation is not al-

Figure 3. The illumination spectra: By placing color filters in front
of the halogen lamp we create 5 distinctly colored light. Spectral
distribution of each light is presented in this plot.

tered during the experiments. The extrinsic and intrinsic pa-
rameters of this stereo-like setup are calibrated beforehand
using a checkerboard and the standard camera calibration
model from Bouguet’s Matlab toolbox [9]. This way, we
estimate a mapping between the images of the two cameras
in order to register the color and depth images.

For the Nikon camera we use a 30mm Sigma zoom lens
to acquire our scenes. The Kinect camera, on the other
hand, has a wide field of view optics, which can unfortu-
nately not be exchanged. Alternatively using the Kinect’s
built-in color camera is not possible, as its colors are not
reliable.

In order to acquire reliable data, we disable the automatic
white balance of the Nikon camera, set all the parameters of
the camera to manual, and capture RAW images. Since Eq 1
is based on the linearity of the image, it is crucial to use the
uncompressed raw output of the camera without any ma-
nipulation which is usually done by the software embedded
in the camera. We use raw images for our evaluations and
calculation of the ground-truth. But since linear raw images
often appear dull and dark on the screen or when printed,
we apply the color transform of Akkaynak et al. [1] (cre-
ated using a Macbeth color checker) along with a gamma
encoding as a post processing step for visualization of our
images in this paper.

Regarding the depth acquisition, several problems arise
due to the operation principle of ToF cameras in general,
as well as to the restricted functionality and flexibility of
the specific ToF Kinect camera. Most of the error sources
related to ToF cameras, such as motion artefacts or interfer-
ence with background illumination are less prominent due
to our specific acquisition setup (see Kolb et al. [17] for a
survey on ToF cameras and their error sources). Two as-
pects are more relevant in our setup, i.e. the range measure-
ments of ToF are less reliable for darker object regions and
highly reflective objects may lead to so-called multi-path
interference, where different light paths from the camera’s
illumination unit to the sensor chip superimpose and lead to
wrong depth values. To circumvent both effects, we capture



Figure 4. An example of the 17 different illumination conditions: Diffuse Multi-illuminant (Top-row), Diffuse Single-illuminant (bottom-
row left), Specular Multi-illuminant (bottom-row right).

Figure 5. Determined Ground-Truth: The original image Iorg (left), the diffuse image Idiff (second from left), the relative shading image
S̃ (center), the relative reflectance image R̃ (second from right), and the specular image Ispec (right) for the W1W2 (top row) and the OB
(bottom row) lighting condition. Note that these images are enhanced for visualization using the gamma curve.

the depth images from the diffuse gray version of the scene
(see Sec. 3.3). Due to the baseline between the Nikon and
the Kinect, we further have the problem of false color as-
signments due to occlusions, i.e. scene points observed by
the range sensor, but not by the color camera may get as-
signed to the color of the occluded object portion. We use
the shadow-maps like approach from Lindner et al. [19] in
order to identify these points and mask them as black.

As far as the specific ToF Kinect camera is concerned,
we already mentioned the wide field of view optics, which
can unfortunately not be exchanged. Furthermore, Kinect’s
ToF can only provide images in a VGA resolution, while
the Nikon has 12 Mega-pixel resolution. Therefore, any of
the two options for image based fusion of the range and the
depth information implies difficult challenges:

• A depth-to-color transformation results in a very
sparse depth representation of the scene with an up-
scaling factor of about 16. Interpolating depth at this
level of sparsity is an unsolved problem. We apply
an inpainting method to illustrate the sub-optimality of
the result; see Fig. 6, left.

• A color-to-depth transformation yields a strongly

down-sampled color image, which would discard a
vast amount of color information and may even be sub-
ject to aliasing; see Fig. 6, right.

Even though, one might argue that using lower resolution
input data is feasible due to intrinsic image decomposition
methods being often computationally exhaustive, we opted
for not using the depth information at this stage, as most ex-
isting intrinsic image decomposition methods do not feature
depth information so far. However, we provide the prelim-
inary, sparse depth information, as it is still an additional
and valuable cue. We will address the challange of provid-
ing full range, high resolution ground-truth depth data and
depth upsampling in our future research.

3.3. Determination of Ground-Truth

The main goal of the paper is to provide ground-truth
data for several scenes under varying illumination condi-
tions. As the shading and the reflectance values can only
be determined up to a constant scalar multiple of the real
values, we cannot calculate the true shading image S and
the true reflectance image R from Eq. 2, but only relative
shading image S̃ and the relative reflectance image R̃.



Condering Eq. 2 the following relations hold:

Iorg = S ·R+ Ispec and Idiff = S ·R, (3)

S ∝ S̃ and R ∝ R̃.

where Iorg denotes the original image, Idiff the diffuse im-
age, and Ispec the specularities.

Specularities: Fig. 5 demonstrates an example from our
dataset with specularity, shading, and reflectance ground-
truth. The first step in creating the ground-truth is to sep-
arate the specular image Ispec from the diffuse component
Idiff. Following the work of Grosse et al. [15], we use a
cross-polarization approach by placing linear polarizing fil-
ters in front of each of the light sources. First we block one
of the light sources and rotate the polarizing filter placed in
front of the camera lens until there are no specularities vis-
ible in the scene. We place a chrome sphere in the scene
to judge the quality of the cross-polarization. Then we un-
cover the second light source and rotate its polarizing filter
until the specularities caused by the second source also dis-
appear from the chrome sphere. This yields Iorg and Idiff,
and from Eq. 3 we get: Ispec = Iorg − Idiff.

Note that even though the polarizing filters’ nominal per-
formance is less than 100% the captured images demon-
strate no visible specularities on the objects.

Reflectance: The second and more difficult step is to sep-
arate reflectance from shading and illumination. Similarly
to Grosse et al. [15], we create exact replica of the scene,
one colored version for capturing reflectance and shading
and one gray version for capturing shading only. We need
to fulfill two main requirements in setting up the two ver-
sions of each scene:

• The geometric accuracy in the acquisition needs to be
at pixel precision, and

• any inter-reflection must equal for both scene variants,
as variations in the inter-reflection lead to erroneous
reflectance.

In order to cope with the first requirements, we use only one
instance of each object, where the initial object version is
painted in a diffuse grayish reference color (RAL7042 stan-
dard paint; RGB=(142,146,145)); our alignment approach
is described later in the text. The colored object versions
are generated by sparsely applying various chromatic paint.
In principle, one could also use initially colorful objects and
uniformly paint them gray, but we found it easier to meet the
first requirement using the prior approach. The second re-
quirement is handled by placing the scene and the camera in
a black tent, thus removing all ambient inter-reflections, and
painting the back side of the objects in diffuse gray in order

not to cause colored reflections on the objects. As we ap-
ply chromatic paint sparsely, the variation in the inter-object
reflection is minimized.

The diffuse acquisition of the initial grayish and the col-
ored scene versions yields the diffuse gray image Igray

diff and
the diffuse colored image Icol

diff. From Eq. 3 we determine

S̃ = Igray
diff , R̃ = Icol

diff/I
gray
diff . (4)

As some intrinsic color reconstruction methods can han-
dle specularities, or even use them to optimize their results,
we additionally provide the captured specular colored im-
age Icol

spec for each scene, i.e. without polarizing filters, for
the W1W2 and the OB illumination conditions.

Alignment: It is crucial to keep the position of the ob-
jects, lights, and the camera fixed between the acquisition of
the colored versions Icol

diff and the gray version Igray
diff . These

images must be aligned at pixel accuracy. It is not enough
to align them in a post-processing step as even slight dis-
placements can drastically alter the cast shadows and other
features of the scene. Painting the objects on the set could
result in some movements. Grosse et al. [15] have con-
structed a platform balanced on a group of spheres to be
able to position the objects on their exact position. We have
found that in our case, as our scenes consist of multiple ob-
jects with different geometries, Grosse et al.’s approach is
difficult to apply. Therefore, we have fixed a large LEGO
plate on the ground level of the scene and glued each of
the objects on a platform made of a small LEGO plate with
4 legs on the corners; see Fig. 2. This structure provides
us with more freedom as well as a very precise way of re-
positioning the objects in the scene. We have examined the
images of the scene with great scrutiny and discarded the
scenes with any slightest visible displacement or rotation.

Figure 6. Top-row: Original RGB (left) and Depth (right) images;
Bottom-row: Depth-to-color transformation using an inpainting
method (left) and color-to-depth transformation (right). The reso-
lution ratio is about 16:1.

3.4. Noise Analysis and Reduction

Since we calibrate the Nikon and Kinect cameras to-
gether, we need to keep the focal length constant for all



scenes. To avoid blurring artifacts, we have chosen a small
aperture for which the depth of field would give us enough
room to place each scene [11].

Dark pixels in the image tend to be much more prone
to noise. In our setup we are interested especially in the
effect of shadows. To avoid artifacts in the shadow areas
we have tested each lighting condition with several different
exposure times and choose the one which produces reliable
images, i.e. in which the object’s pixels’ RGB values are not
being over or under exposed. For each lighting condition,
we capture the gray and the colored version of the scene
with the same exposure time. As our scenes are stationary,
we can allow for longer exposure, while keeping the ISO
low enough to reduce noise.

As any camera-based image acquisition is affected by
noises, we evaluate the noise-level of the Nikon in order to
determine an appropriate number of images that need to be
taken and averaged for noise reduction. Therefore, we run
a sequence of acquisitions of the Macbeth chart, manually
segment one of its gray-level patches, and compute the stan-
dard deviation for R, G, and B using all pixel values within
the segmentation. Fig. 7 depicts the resulting standard de-
viation as function of the number of averaged images.

In the current work, we use the average of 10 images
to construct one shot, which is a feasible compromise be-
tween the amount of data to be acquired and the noise level
achieved.

Figure 7. The standard deviation of a gray cell inside a Macbeth
chart as function of the number of averaged images.

4. Benchmarking

In this section we evaluate Barron et al. [2], Gehler et al.
[13], and Serra et. al. [23], three of the state-of-the-art in-
trinsic image recovery methods using the proposed dataset.
We use the publicly available code for each of these meth-
ods from the authors’ own web pages. All the parameters
are set to the default provided with these codes and no fur-
ther training on our data has been done. Tab. 1 provides
quantitative evaluation of each method on our dataset 2. To
better explain the results we have grouped our lighting con-

2Examples of results are available for qualitative comparison in the sup-
plementary document.

ditions from Sec. 3.1 in six categories:

White ∈ {W1W2 , W1N , NW2}
MonoColor ∈ {ON , YN , NB , NG}
ColorWhite ∈ {W1B , W1G , OW2 , YW2}
MultiColor ∈ {OB , OG , YB , YG}

SpecWhite ∈
{
{W1W2}Spec

}
SpecMultiColor ∈

{
{OB}Spec

}

where the Spec subscript denotes that the polarizing fil-
ter has been removed to allow for specularities. Here we
use two different metrics, namely Local Mean Square Er-
ror (LMSE) and Angular Error (Ea).

As discussed before, the ground truth shading and re-
flectances can only be provided up to a scalar multiple of
the true values. To tackle this issue, Grosse et al. [15] de-
fine LMSE as the scale-invariant mean square error (MSE):

MSE(x, x̂) = ‖x− α̂x̂‖2 , (5)

where x and x̂ are the vector-valued true and estimated val-
ues respectively with α̂ = argminα‖x− α̂x̂‖2 . Here α is
fitted over each local square sized window w of size k. The
LMSE is given by:

LMSEk(x, x̂) =
∑
w∈W

MSE(xw, x̂w) . (6)

We refer the readers to Grosse et al. [15] for more details.
We provide LMSE values for each of the methods regarding
the reflectance and shading in Tab. 1. While the shading
ground-truth of Grosse et al. is a 2D grayscale image, our
shading ground-truth contains an extra dimension, i.e. the
color of the illuminant at each pixel. Here we only use the
gray values of our ground truth and the estimated shadings
by the 3 methods.

Barron et al. [2] also provides color values for shad-
ing which integrates the illumination estimate. To evalu-
ate the per-pixel illumination estimates, we use the Angular
Error which is a common metric in the field of color con-
stancy [5]. For a pair of vectors igt and iest which denote
ground truth and estimated illuminant color respectively,
we define:

Ea = arccos
(
(igt)

T
(iest)

)
. (7)

In Tab. 1, the illumination evaluation is produced by cal-
culating the mean value of the per-pixel Ea over the en-
tire estimated and ground truth shading. As [13, 23] only
provide grayscale shading, we compare Barron et al. [2]
against the baseline that is to set the estimation to a gray



Diffuse Acquisition Specular Acquisition
Evaluation Method White MonoColor ColorWhite MultiColor SpecWhite SpecMultiColor

Reflectance
Barron et al. 0.045 0.233 0.158 0.264 0.051 0.410
Gehler et al. 0.155 0.263 0.194 0.257 0.154 0.280
Serra et al. 0.049 0.117 0.096 0.133 0.044 0.102

Shading
Barron et al. 0.018 0.024 0.024 0.029 0.015 0.028
Gehler et al. 0.013 0.014 0.011 0.015 0.013 0.023
Serra et al. 0.014 0.019 0.020 0.024 0.019 0.030

Illumination
Barron et al. 2.0◦ 23.0◦ 17.6◦ 29.8◦ 4.7◦ 48.9◦

Baseline 21.9◦ 29.3◦ 23.9◦ 28.0◦ 21.9◦ 28.5◦

Table 1. Evaluation results.

value (R=G=G). Note that Ea is invariant to the scale fac-
tor which exists between the true value of the illuminant at
each pixel and our ground truth.

According to Tab. 1, the methods are more challenged
when the illumination color strongly deviates from white as
it is very difficult to separate the effect illumination color
from the natural intrinsic color of the object. The lowest er-
ror is achieved when the illumination is all white. The pres-
ence of specularities also increases the error. Over all, Bar-
ron et al. perform better when estimating the illumination
since they consider colored lighting in the optimizations,
Gehler et al. are more accurate in estimation of shading,
and Serra et al. perform better in recovering reflectance.

5. Discussion and Future Work

Here we briefly discuss challenges and avenues for fu-
ture work:

Lighting: Even though using the gray-painted version
of the scene, a reliable ground-truth can be calculated, this
strongly relies on all the other conditions in the scene, espe-
cially the lighting, to be unchanged. Outdoor lighting and
natural scenes are widely dynamic, e.g., moving clouds,
shaking leaves in a light breeze. Bell et al. [7] tackle this
using a crowd-sourced ground-truth labeling performed by
human subjects. But the authors admit that this creates er-
rors since the human judgment is subjective and does not
always hold up to the reality due to perceptual errors. We
will further investigate the incorporation of ambient light
and complex backgrounds in the future.

Interreflections: Global illumination in real-world re-
sults in colored interreflections which though interesting to
have in a dataset, could falsify the ground-truth because the
colored interreflections caused by the diffuse-diffuse reflec-
tion will not be present on the gray-painted scene; therefore,
the ground-truth calculation wrongly considers them as part
of the reflectance. Despite our best effort, some minor in-
terreflections are still present in our data, e.g. car fenders
in scene 2. We argue that these effects can be over-looked
as in our data they cause only an average 1.69◦ alteration in
recovered ground-truth reflectance color in terms of angular

error for an area of about .4% of total object pixels. This is
far below affecting the numbers in Table 1. In the future, we
will explore more effective ways of avoiding such artifacts
while featuring scenes with interreflections.

Texture: The MIT dataset does not contain color texture
and has minimal 3D texture. Our dataset features some fine
3D textures (e.g., the brush strokes, the texture of the 3D-
printed dragon in Scene 1, and the pattern on the LEGO
plate). We would like to extend our dataset to include more
color variations and 3D textures like fur and woven textile.

Depth upsampling: The current real depth information
acquired with a ToF-Kinect is sparse in resolution compared
to the color imagery. Some works in the literature have so
far attempted to tackle range data upsampling using corre-
sponding RGB data [22].

6. Conclusion

In this paper, we have presented the methodology to gen-
erate real-photo ground-truth dataset for intrinsic image re-
search with complex, multi-illuminant scenarios under non-
uniform lighting and challenging colored cast shadows. We
provide full per-pixel intrinsic ground-truth data for these
scenarios, including reflectance, specularity, shading, and
illumination. Furthermore, we have evaluated 3 state-of-
the-art intrinsic image recovery methods, using our dataset.
Our versatile, ground-truth dataset can be used for devel-
oping and evaluating any current and future intrinsic image
reconstruction technique. We hope that as the MIT dataset,
despite its shortcomings, has sparked the creation of several
intrinsic image methods in the past, our dataset can con-
tribute to the new developments in this field.

Intrinsic video decomposition methods are becoming a
recent trend in the community [30, 8]. It would be interest-
ing to extend our dataset to dynamic scenes.
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