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Abstract—Denoising of Time-of-Flight (ToF) range data is
an important task prior to further data processing. Existing
techniques commonly work on a post processing level. This paper
presents a novel approach for improving data quality on the
image acquisition level by automatically determining the best
integration time for arbitrary scenes. Our approach works on
a per-pixel basis and uses knowledge gained from an extensive
analysis of the underlying inherent sensor behavior regarding
intensity, amplitude and distance error to reduce the overall error,
to prevent oversaturation and to minimize the adaption time. It
also works well in presence of various reflectivities and quick
changes in the scene. This represents a significant improvement
over previous methods.

Keywords—Data analysis, Time-of-Flight, cameras, image sen-
sors, noise reduction, performance evaluation

I. INTRODUCTION

Time-of-Flight (ToF) data denoising has always been an
important discipline in image processing. Several techniques
have been established during the last years. Methods for
outlier removing and outlier correction have been developed
to improve acquisition quality of noisy data. Denoising and
optimization can be applied at different stages: at image
acquisition level and/or during data processing. Previous works
have shown that combining both optimization stages gives the
best result [1][2]. In this work, we present a new approach
to automatically determine the best integration time for ar-
bitrary scenes using the knowledge of underlying inherent
sensor behavior and properties. The approach benefits from
a detailed sensor data analysis and integrates this knowledge
into a novel algorithm that is more flexible and stable than a
proportional feedback control system especially in unknown,
arbitrary scenes. While prior work [3][4] concentrates on a
global optimization of intensities or amplitudes, this work
focuses on a per-pixel based improvement. This enables one
to use only portions of the image or even apply per-pixel
weighting, counteracting sensor properties (e.g. spatial inten-
sity distribution) and allowing to adjust importance of certain
image regions (e.g. image center over image border regions).
We significantly improve the results compared to previous
approaches in regard of adaption performance and thus in
reduction of the mean error over time. We have used a PMD
CamCube 3.0, however, our findings are applicable for other
sensors as well since different ToF sensors depict a similar

behavior [5]. The PMD working principle can be found in [2].
This paper comprises the following contributions:

• A per-pixel online auto integration time estimation
algorithm

• An extensive sensor behavior analysis

• A ToF simulation framework based on real physical
data for data evaluation

The remainder of this paper is organized as follows. In
Sec. II the related work to this paper is discussed. Sec. III
shows the newly proposed automatic integration time estima-
tion algorithm. In Sec. IV, a sensor evaluation that explains
inherent sensor properties our algorithm takes advantage of is
conducted. Sec. V shows our results and Sec. VI concludes
this paper.

II. RELATED WORK

This paper presents a novel approach for an online adaption
of the integration time for ToF cameras. In this section we will
discuss important existing work related to ToF error sources,
noise reduction and automatic integration time estimation.
The measurement quality of ToF cameras is influenced by
several factors. Foix et al. [6] have shown different kinds of
systematic errors, such as depth distortion (wiggling error),
pixel-, amplitude-, temperature- and also integration time re-
lated errors. In [2], several methods are discussed on how ToF
noise can be reduced. They give an overview on how errors
and noise occur and state that a longer integration time causes
a higher amplitude due to more incident light. This enhances
the signal-to-noise ratio and the depth variance. Several other
works concentrate on the performance and measurement un-
certainty of ToF sensors [5][7].
Noise is an unavoidable source of measurement uncertainty.
Its reduction has been studied very well during the last years.
Several techniques have been established mainly concentrating
on denoising in a post processing step. Methods for detecting
and repairing defective areas have been developed and pre-
sented. Those approaches work either on raw data or on the
final amplitude, intensity or depth image [1][8][9][10].
While most of the works for data denoising concentrate on
post processing, data improvement can also be achieved by
optimizing the integration time as proper saturation yields a
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Fig. 1: The figure shows two different measurements of the
same office scene in jet color encoding. The left image uses
a low integration time of 50 µs while the right image uses a
more adequate integration time of 2000 µs).
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Fig. 2: The principle schema of the integration time estimation
algorithm.

high signal-to-noise ratio and thus reduces noise. May et al. [3]
present an approach for dynamic integration time estimation by
approximating an overall mean intensity using a proportional
controller. Gil et al. [4] propose an automatic integration time
adaption approach for visual servoing of mobile robots by
approximating a mean amplitude. This is related to [3], but
optimized for robots.

III. THE PROPOSED METHOD

Optimizing a ToF sensor’s integration time for the current
scene is an important aspect in reducing sensor errors stem-
ming from both under- and oversaturation. In this section we
present an approach applicable to scenes without any scene
pre-knowledge, but by applying sensor specific characteristics.
Thus, scenes can contain randomly placed objects with differ-
ent reflectivities.
Fig. 1 shows how the appropriate choice of integration time
significantly reduces noise-related errors in a scene. This
section will explain how our proposed algorithm works.

A. Algorithm

The basic idea of our algorithm is to calculate the optimal
integration time for the next frame on a per-pixel basis
instead of averaging the whole image as prior work does.
To accomplish this, we use our understanding of the sensor’s
behavior regarding intensity, amplitude and distance error. The
algorithm schema can be found in Fig. 2.
The intensity shows to be much less susceptible to ambiguous
behavior compared to the amplitude. Also, its linear behavior
is much more consistent (see Sec. IV-B). Additionally, its
deviation from linear behavior, which can also be described
as degree of oversaturation, can be partly compensated (see
Sec. IV-E), which makes it ideal for approximating a de-
sired intensity by estimating a proportional factor. However,
oversaturation causes the intensity to deviate from linear
behavior which makes approximations by a proportional factor
inaccurate when oversaturation is present. But these effects

can be partly compensated using a correction function (see
Sec. IV-E). The amplitude has a direct correlation with the
distance error (see Sec. IV-C), but we can only reliably
approximate intensities not amplitudes. However, there is a
linear correlation between the amplitude and intensity (see
Sec. IV-D). So, by defining an ideal amplitude, correlating
with the smallest error, we can derive an ideal intensity that
is to be approximated.
With this knowledge, we are able to calculate the optimal
integration time (the integration time at which the error is
lowest) topt per-pixel in the following manner:

1) Determine the optimal amplitude Aopt, i.e. the ampli-
tude where the error is the lowest. This is explained
in detail in Sec. IV-C.

2) Determine the optimal intensity Iopt that corresponds
to the optimal amplitude Aopt using the amplitude-
intensity mapping function

m(x) =

1∑
i=0

aix
i, (1)

a linear function fit to amplitude and intensity data
(see Sec. IV-D).

3) Determine the intensity correction function

h(x) =

3∑
i=0

aix
i, (2)

a polynomial of 3rd degree, fit to the intensity’s mea-
sured and correct values. The extraction of correct
intensity values and its connection to measured ones
is explained in detail in Sec. IV-E.

Having determined Iopt, m and h, we are able to calculate
the optimal integration time topt per-pixel:

1) Calculate the corrected intensity from the current
intensity, using the intensity-correction function:

Icorr,x,y = h(Icurr,x,y) (3)

2) Calculate the proportional factor:

fx,y =
Iopt

Icorr,x,y
(4)

3) Calculate the optimal integration time:

topt,x,y = fx,y · tcurr (5)

This yields an individual optimal integration time for each
pixel. Now we have to calculate an overall optimal integration
time for the whole image. For this task we use a weight map,
incorporating a compensation for sensor-specific behavior and
regarding pixels near the image center as more important than
near image borders (see Sec. IV-A). The weight map based
calculation of the optimal integration time for the whole image
is done in the following manner:

1) Calculate the pixel weight from the weight map and
the gain factor:



w′x,y = wx,y · g (6)

2) Calculate the optimal integration time for the whole
image as a weighted average of the pixel specific
optimal integration times:

topt =

∑
w

′

x,y · topt,x,y∑
w′

x,y

(7)

Compared to prior work on integration time estimation,
our proposed algorithm has several advantages. It estimates
the integration time on a per-pixel basis. This enables one
to use only portions of the image or even apply per-pixel
weighting, counteracting sensor properties and allowing to
adjust importance of certain image regions (see Sec. IV-A).
Additionally, it uses knowledge gained from an extensive
analysis of the underlying inherent sensor behavior regarding
intensity amplitude and distance error. This knowledge is used
to minimize the overall error and to prevent oversaturation or
at least escape from it quickly. This works well in presence of
highly various reflectivities and quick changes in the scene.

IV. SENSOR ANALYSIS

The main goal of this paper is the reduction of the
overall error due to inappropriate integration times in arbitrary
scenes. As previous work has shown (see Sec. II), this can be
achieved by preventing or at least by minimizing under- and
oversaturation to increase the number of usable data points.
To get a better understanding on how amplitudes, intensities
and the distance error correlate with each other, an initial
PMD sensor analysis is necessary. For this purpose we use
eight metal plates with different colors and reflectivities: black,
metallic, blue, green, red, silver, yellow and white. These plates
are fixed on a planar wall at a distance of approximately 1
meter and are recorded with a distance and intensity calibrated
PMD camera with an integration time range between 50 and
8000 µs with a step size of 1 µs. These measurements are
used for the sensor data evaluation in the next sections. The
polar ground truth for the error analysis has been calculated
per pixel, using the median of various hundred measurements
with different integration times while omitting under- and
oversaturated values, and a final 2D median filtering step.
Using a reference plane fitted to temporally averaged Cartesian
distance data yielded very similar results.

A. Spatial Intensity Distribution

Pixels near the image border yield a much lower intensity
and amplitude, even when the measured distance is approx-
imately the same (see Fig. 3). Such areas are much harder
to properly saturate. Often very high integration times are
needed. But choosing such high integration times causes an
oversaturation in the image center while properly saturating the
image borders. If we weight all pixels equally when estimating
the optimal integration time, the integration time will be opti-
mized to what most pixels need to be properly saturated. Since
most pixels reside outside the image center, the calculation
will yield an integration time that optimizes the image borders
and oversaturates the image center. If oversaturation causes a
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Fig. 3: The left image shows an intensity image from our test
scenario (see Sec. IV). Two dark blue circular spots in the
center have been invalidated due to very high oversaturation,
caused by a total reflection. The right image shows a weight
map with values of a Gaussian distribution that is used to
weight pixels in the algorithm (see Sec. III-A).

growth in error to the same degree as non-optimal saturation,
then optimizing areas where most pixels reside, namely image
borders, will actually reduce the overall error. However, if
a system detects and excludes oversaturated values, such an
approach will reduce the number of valid points. Also, the
image center often captures more important objects than the
image borders and should thus be regarded as more important.
As a result, we have incorporated a weight map into our
approach (see Sec. III-A). This allows us to weight each
pixel according to its importance. As Fig. 3 shows, we have
chosen to use a Gaussian value distribution for our weight
map, normalized between 0 and 1.

B. Intensity and Amplitude Behavior
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Fig. 4: Intensity to integration time and corresponding lines
fitted to the intensity’s linear behavior. Values above the
ambiguity border (brown line) are considered ambiguous.
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Fig. 5: Amplitude to integration time and corresponding
lines fitted to the amplitude’s approximately linear behavior.
Values above the ambiguity border (brown line) are considered
ambiguous.

Fig. 4 shows the intensity as function of the integration
time and linear fits to the intensity-curves based on their initial



linear behavior. When oversaturation occurs (starting with
values around 10000), the intensity starts deviating from its
linear behavior (dashed lines) and reduces its gradient, which
in some cases (e.g. white or silver) becomes even negative.
Areas where the intensity function is not strictly increasing
are considered ambiguous, as they cannot be mapped back to a
distinct integration time, and reside above the ambiguity border
(brown line). Also note the black measurement’s extremely low
reflectivity.
Fig. 5 shows the amplitude as function of the integration time
and, as with the intensity functions, linear fits to the curves
based on their initial linear behavior. It can be seen that with
an increasing integration time, the amplitude values reach a
peak and then decrease in value. Compared to the intensity,
the amplitude has a much larger area of ambiguity. Also, the
amplitude behaves less linearly than the intensity as its gradient
becomes a bit larger before the values reach the peak.
In both figures, the effects of oversaturation can be seen as
deviation from linear behavior. This has also been observed
by May et al. for the Swiss Ranger SR-2 ToF camera and
denoted as ”oversaturation gap” [3, p.3].
As already explained, values above the ambiguity border
cannot be mapped back to a distinct integration time. This
essentially means that, from their value alone, they cannot be
distinguished between being slightly or strongly oversaturated.
Overall the intensity shows to be much less susceptible to
ambiguous behavior compared to the amplitude. Also, its linear
behavior is much more consistent.

C. Amplitude-Error Correlation
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Fig. 6: Error to amplitude. Amplitude values on the right of the
ambiguity border (brown line) can have both small and very
large errors, but cannot be differentiated due to the ambiguous
behavior explained in Sec. IV-B and Fig. 5.

In our effort to improve quality by automatic integration
time estimation, we have to analyze the error behavior in regard
to the integration time and resultant intensity and amplitude.
Fig. 6 shows the correlation between the average error and
the amplitude. Amplitude values above 18000 can have both
small and very large errors, but cannot be differentiated due to
the ambiguous behavior explained in Sec. IV-B and Fig. 5.
However, it can be seen that for unambiguous amplitude
values, the error is smallest between 10000 and 18000. This
is true for all measurements, even black.
May et al. show that the ”most precise mean accuracy could be
acquired with an integration time located near the amplitudes
maxima” [3, p.3]. This is true for both their Swiss Ranger
SR-2 and our PMD CamCube 3.0, however, as already shown
in Fig. 5 and Fig. 6, values near the maxima are ambiguous

and thus cannot be used. May et al. also omit these values but
attribute this to the fact ”that the image has a non-neglective
saturation at the amplitudes maximum” [3, p.4].
Choosing an amplitude a bit too low only causes the error
to rise slightly while choosing an amplitude too large causes
values to exceed 18000. Such values cannot be differentiated
between being only slightly or strongly oversaturated (see
Fig. 6) and may carry large errors.
It can be argued that every value in-between is a viable candi-
date for the optimal amplitude. E.g., if omitting a substantial
portion of the image due to oversaturation in order to optimize
the remaining values is conceivable, choosing a value close to
18000 is adequate. However, if preventing oversaturation is the
main goal, a value close to 10000 is better suited for this task.

D. Amplitude-Intensity Mapping
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Fig. 7: Intensity to amplitude. In non-oversaturated areas,
the intensity and amplitude are directly proportional to one
another. The orange line represents the mapping function
between amplitude and intensity values. Values to the right of
the ambiguity border (brown line) are considered ambiguous
(see Fig. 5).

Fig. 7 shows the correlation between the intensity and the
amplitude. It can be seen that there is a linear relationship
between the amplitude and the intensity, as long as we stay
within value ranges outside of oversaturation (amplitude ≤
18000). By fitting a line (orange) for amplitude values below
18000 (values above cannot be mapped by a function as they
are ambiguous; see Fig. 5 ), we establish a mapping between
the amplitude and intensity. The black measurement exhibits
a unique behavior that distinguishes it from the other colors.
This stems from its unique intensity behavior that was already
observed in Fig. 4. Since this behavior is an exception and
cannot be easily compensated, the black measurement is not
applicable for amplitude-intensity matching and thus omitted
from the fitting process.

E. Intensity Correction

We define the correct intensity as the value an intensity
would have reached if the oversaturation did not have any ef-
fects regarding the linear behavior. Fig. 8 shows the correlation
between the measured and the correct intensity. The correct in-
tensity is derived from the intensity and its corresponding line
that has been fitted to non-oversaturated values (see Fig. 4).
The difference in values shows the enormous discrepancy
between oversaturated measurements and what their values
would have been if they had not been oversaturated.
To compensate for this discrepancy, we have chosen to fit a
3rd-degree polynomial to the data left of the ambiguity border
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Fig. 8: Measured intensity to correct (linearized) intensity. The
orange line represents the correction polynomial for intensity
values.

TABLE I: The table shows the estimated sensor and correction
parameters.

Parameter Value(s)
Optimal amplitude (Aopt) 18000
Optimal intensity (Iopt) 7353
Amplitude-intensity-mapping function (m(x)) 0.6067281 -3475.016

6000 ≤ x ≤ 18000

Intensity-correction function (h(x)) 2.2026e-10 4.417871e-05
0.4276858 1100.069
10000 ≤ x ≤ 25000

Gain factor 1.11

and to only correct values above 10000 (see Eq. 2). This
polynomial serves as correction function that allows us to ap-
proximate an intensity’s actual value in case of oversaturation.

V. ALGORITHM EVALUATION

The previous sections have presented our algorithm (see
Sec. III-A) and depicted an extensive analysis of underlying
inherent sensor behavior (see Sec. IV). This section compares
our approach to the work proposed by May et al. [3] and
details differences in quality, quantity and adaption speed. For
further evaluation purposes, we use the parameters estimated
in Sec. IV. These parameters can be found in Table I.

A. Evaluation Framework

We perform two kinds of evaluation. In the first measure-
ment, we use a static scene with metal plates of different
colors/reflectivities (black, metallic, blue, green, red, silver,
yellow and white) in a distance of approximately 1 m (see
Sec. V-B). However, since the results have been very similar
for all plates, we exemplary present the plots for red plate.
In the second measurement, we have recorded an arbitrary
office scene with the camera orientation changing in-between
every frame by about 15◦ around the x-, y- and/or z-axis,
representing a highly dynamic scene scenario (see Sec. V-C).
For both scenes, each frame has been recorded with the full
spectrum of integration times, ranging from 50 to 8000 µs.
This allows us to use a scene for reproducible tests with
different and differently parametrized auto integration time
estimation approaches. Our simulation framework chooses the
integration time for the next frame according to the optimal
integration time calculated in the previous frame. To achieve
a fair and meaningful comparison, we have performed the
simulation with various initial integrations times.

B. Static Metal Plate Scene Evaluation

Fig. 9 compares the approach of May et al. (top row) to
ours (bottom row). The static scene has been recorded for
20 frames. We have used 5 different initial integration times,
covering strong under- and oversaturation as well as average
saturations. We compare the development of integration times
over the course of the algorithm, the mean error to the ground
truth (see Sec. IV) and the number of well saturated values
(amplitude values between 250 and 18000) in the image. It can
be seen that May’s algorithm slowly converges to the optimum
after about 8 frames while our approach is already close to
the optimum after 3 frames. Additionally it can be seen, that
our algorithm has a smaller mean error (0.013 m) compared
to May et al. (0.027 m). Also the number of well saturated
pixels is higher for our algorithm (19000) compared to May
et al. (17000).
Our approach’s fast adaption to the proper integration time,
especially in areas of oversaturation (the first 3 frames) and
the resultant lower error can be attributed to the fact that we
correct the intensity values before calculating the proportional
factors.

C. Dynamic Scene Evaluation

Fig. 10 compares the approach of May et al. (top row)
to ours (bottom row) in the highly dynamic office scene
over the course of 35 frames and with 5 different initial
integration times. Our approach converges within 8 frames
to the global optimal integration time, while the algorithm of
May et al. needs up to 20 frames. However, the mean error is
approximately the same for both approaches (0.047 m). The
number of well saturated pixels is higher for our algorithm
(35700) compared to May et al. (33500).
This shows us several things. As explained in Sec. IV-A, if
oversaturation causes a growth in error to the same degree
as non-optimal saturation, then optimizing areas where most
pixels reside, namely image borders, will actually reduce the
overall error. Also, just because amplitudes reach beyond the
ambiguity border does not necessarily mean that they are
oversaturated.
Overall our approach shows a faster adaptability, especially in
oversaturated scenes, which can, like with the static scene, be
attributed to the intensity correction.

VI. CONCLUSION

In this paper we presented a novel online integration time
adaption algorithm that works on a per-pixel basis and uses
knowledge gained from an extensive analysis of the underlying
inherent sensor behavior regarding intensity, amplitude and
distance error to reduce the overall error, to prevent over-
saturation and to minimize the adaption time. It also works
well in presence of various reflectivities and quick changes
in the scene. The per-pixel character enables us to use only
portions of the image or even apply pixel-specific weighting,
counteracting sensor properties (e.g. spatial intensity distri-
bution) and allowing to adjust importance of certain image
regions. Overall, this represents a significant improvement over
previous methods. We also introduced a simulation framework
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Fig. 9: Comparison between the approach of May et al. (top row) and ours (bottom row). A static scene capturing a red metal
plate from a distance of 1 m is recorded for 20 frames. We compare the integration time (left), the mean error (center) and the
number of well saturated pixels (right).
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Fig. 10: Comparison between the approach of May et al. (top row) and ours (bottom row). A highly dynamic office scene is
recorded for 35 frames. We compare the integration time (left), the mean error (center) and the number of well saturated pixels
(right).

that allows us to perform reproducible and comparable tests
with different and differently parametrized auto integration
time estimation approaches.
Future work will concentrate on applying and optimizing this
method to other ToF sensors.
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