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Zusammenfassung
Die Erkennung menschlicher Haut in Bildern ist für viele Anwendungsgebiete von
Vorteil. Insbesondere die biometrische Gesichtserkennung, die zunehmend häufig
z.B. bei der automatisierten Grenz- oder Zugangskontrolle Verwendung findet, kann
davon profitieren. Im sichtbaren Lichtspektrum allein ist die Unterscheidung echter
Haut von anderen Materialien in Anbetracht verschiedener Hauttypen und wech-
selnder Lichtbedingungen jedoch häufig schwierig. Daher sind Täuschungsangriffe
mit Verkleidungen oder Masken immer noch ein großes Problem für den derzeitigen
Stand der Technik.

Diese Dissertation beschreibt einen neuen Ansatz zur Hauterkennung, der auf
den charakteristischen spektralen Remissionseigenschaften von Haut im Nahinfrarot-
spekrum basiert, und stellt eine modalitätsübergreifende Methode zur Erweiterung
bestehender Lösungen vor, mit der die Echtheit von Gesichtern sichergestellt wird.
Weiterhin beschreibt sie ein Referenzdesign für ein aktives multispektrales Kam-
erasystem und dessen Implementierung, sowie eine umfassende Validierung des
Konzepts.

Das System erfasst multispektrale Bilder mit vier Wellenlängenbändern in einer
Zeit von T = 50ms. Mit Hilfe eines Machine-Learning-basierten Klassifikators erzielt
es eine bisher unerreichte Genauigkeit bei der Hauterkennung und unterscheidet
selbst hautähnliche Materialien zuverlässig von echter Haut. In Kombination mit
einer kommerziellen Gesichtserkennungssoftware wehrt das System erfolgreich alle
untersuchten Täuschungsangriffe ab.
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Abstract

The detection of human skin in images is a very desirable feature for applications
such as biometric face recognition, which is becoming more frequently used for, e.g.,
automated border or access control. However, distinguishing real skin from other
materials based on imagery captured in the visual spectrum alone and in spite of
varying skin types and lighting conditions can be difficult and unreliable. Therefore,
spoofing attacks with facial disguises or masks are still a serious problem for state of
the art face recognition algorithms.

This dissertation presents a novel approach for reliable skin detection based on
spectral remission properties in the short-wave infrared (SWIR) spectrum and pro-
poses a cross-modal method that enhances existing solutions for face verification to
ensure the authenticity of a face even in the presence of partial disguises or masks.
Furthermore, it presents a reference design and the necessary building blocks for
an active multispectral camera system that implements this approach, as well as an
in-depth evaluation.

The system acquires four-band multispectral images within T = 50ms. Using a
machine-learning-based classifier, it achieves unprecedented skin detection accuracy,
even in the presence of skin-like materials used for spoofing attacks. Paired with a
commercial face recognition software, the system successfully rejected all evaluated
attempts to counterfeit a foreign face.
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Chapter 1

Introduction

The reliable detection of human skin in images is a very desirable feature for a variety
of applications, especially in the fields of safety and security: on the one hand, a
reliable and skin type independent detection and tracking of persons and their hands
around potentially dangerous machinery such as robot workplaces, for example, can
help to prevent accidents. On the other hand, the capability of distinguishing au-
thentic human skin from other materials can also be used to detect so-called spoofing
attacks on face recognition systems. Face recognition is an important tool for many
biometric systems and a very active research topic [1]. The human face has advan-
tages over other biometric traits, as it can easily be captured in a non-intrusive way
from a distance [2]. Consequently, biometric face recognition systems are becoming
more frequently used, for example, at airports in the form of automated border control
systems, for access control systems at critical infrastructure or even for user log-on
and authentication at computers or smartphones. However, despite the significant
progress in the field, face recognition still has serious problems in real-world scenarios
when dealing with changing illumination conditions, poses and facial expressions, as
well as facial disguises or spoofs, such as masks [3].

Detecting human skin using solely monochrome or color imagery captured in
the visual (VIS) spectrum, i.e. from approx. 380 nm to 750 nm [4], is problematic,
as variations in skin types and illumination conditions can make it very hard to
distinguish skin from other materials. Infrared imaging in the spectral range from
700 nm to 2400 nm, has shown to provide more reliable results [5]. The existing
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approaches that make use of the short-wavelength infrared (SWIR)1 spectral range
can be classified into four groups: multispectral image acquisition using multiple
cameras with band pass filters [5, 6], hyperspectral imagers [7], single cameras using
filter wheels with band pass filters for sequential multispectral image acquisition [8]
and, more recently, single cameras with Bayer-like band pass filter patterns applied
directly on the sensor [9]. All of these systems are passive, i.e., filter-based and without
active illumination, and thus require sufficient daylight or external lighting.

This dissertation presents and validates the concept of an active multispectral SWIR
camera system that is specifically optimized for skin detection and face verification
based on spectral signatures of object surfaces. A spectral signature is a specific
combination of remission intensities in distinct, narrow wavebands that is used for
the classification of the object’s surface material. The active illumination ensures
defined and constant lighting conditions within a typical indoor working range while
avoiding any shadowing caused by unknown illumination directions.

1.1 Application Examples and Requirements

Although the research and system concept presented in this dissertation is focused
on the field of anti-spoofing for biometric face recognition, it is not restricted to this
field alone and does not imply any application specific assumptions. In this section,
examples of application scenarios are introduced that benefit from a reliable skin
detection method and have been addressed in two research projects conducted at
the Bonn-Rhein-Sieg University of Applied Sciences (BRSU) in the recent years: spoof
detection at biometric face recognition systems (FeGeb) and safe person detection in working
areas of industrial robots (SPAI).

1In the literature, the infrared spectrum below 1.4µm is commonly referred to as the near infrared
band (NIR, or IR-A), while the infrared spectrum above 1.4µm and up to 3µm is referred to as the
short wave infrared band (SWIR, or IR-B). The spectral signatures discussed in this work are arranged
within the wavelength range of 0.9µm up to 1.7µm, which covers parts of both the near infrared
and short-wavelength infrared. However, most researchers as well as camera manufacturers use only
the term SWIR when describing this wavelength range in order to distinguish their research area or
products from those that reach only up to 1µm. This work will adopt this simplification.
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1.1.1 Anti-Spoofing for Face Recognition

Biometric face recognition (FR) has been and still is an active research topic within the
past decades [10]. Under controlled conditions, current state-of-the-art face recogni-
tion algorithms can achieve even better results than human recognition. However,
in unconstrained environments, automated face recognition still faces problems han-
dling varying illumination, facial expressions or poses [3]. To overcome the problem
of changing illumination conditions, the use of active infrared imagery has been pro-
posed in recent years. Frontal illumination of faces with near infrared (NIR) radiation
that is invisible to the human eye helps to reduce lighting problems significantly
without distracting or blinding the subjects [10]. However, especially determining
whether a recognized face is authentic or “fake”, i.e., a printed picture or a facial
disguise, is still an open issue of face recognition systems [1, 3].

There are several reasons for attacking a face recognition system using so-called
spoofs, such as to counterfeit the face of an authorized person at access control
points or to disguise the own identity when entering a sports stadium although
being banned [11]. Spoofing attacks range from printed photos over recorded video
displayed, for example, on a mobile device, to facial disguises and masks, which
might cover the face partially or completely. The impact of such attacks on face
recognition has been researched in several studies, for example in the context of the
research project TABULA RASA [12].

By using a face recognition system that is capable of distinguishing authentic skin
from spoofs reliably, most spoofing attacks can be detected and rejected. In this thesis,
the following two applications of face recognition systems are analyzed:

Automated Border Crossing Systems, so called eGates, have been introduced in re-
cent years and are becoming more frequently used, for example at airports [13].
These systems consist of an electronic passport reader and a biometric face recog-
nition system, which captures the face of a person and compares its biometric
features to those found in the image read from the ePassport. If the features
match, the person is allowed to pass. Figure 1.1 on the following page shows
an example of an eGate system.

Access Control Systems are another common application for face recognition sys-
tems. Only users whose facial features are registered on a whitelist are granted
access by such a system. A simple example is the face unlock feature of An-
droid smartphones [14]. More advanced solutions are commercially available
on the market. Besides user log-on or granting physical access to high security
areas, they can also be used to protect critical infrastructure from unwanted
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Figure 1.1: Example of an eGate system.
Images: secunet Security Networks AG

individuals. For this purpose, the system may use a blacklist containing facial
features of persons who are not allowed to enter. A potential application for
this blacklisting method can be found at sports stadiums: operators often keep
registers of people who are not allowed to enter the stadium, e.g., because they
have been banned for violent behavior. Automating the identification of these
individuals using face recognition at the security check may increase the chance
of successfully keeping them from entering the stadium.

Independent of using a white- or a blacklist, both applications describe so-called
cooperative user scenarios: users of such face recognition systems can be expected
to cooperate with the recognition process by turning their heads towards the camera
or by removing any head wear, because they are only granted access if their face has
been captured successfully. Without assuming a specific application, the following
rather generic requirements on a suitable camera system for anti-spoofing have been
formulated in the context of this work:

1. Reliable material classification. To detect potential spoofing attacks, all skin and
non-skin surfaces must be reliably distinguished and only authentic faces must
be accepted by the face recognition system, independent of a users skin type,
gender or age. Any material that is falsely classified as skin is a potential security
threat.

2. Detailed image of the facial region. The face of a user must be captured with suf-
ficiently high spatial resolution in order to extract the biometric features.
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3. Method to combine skin and face detection. Skin detection and face recognition
modules must be combined in order to reliably reject spoofing attacks and to
avoid opening up new possibilities to attack the system.

1.1.2 Other Applications

Contactless detection of persons and their limbs is also a desirable feature for many
safety applications. At manually-fed machines such as bench saws or presses, for
example, potentially dangerous moving parts are difficult to shield off from the reach
of the user during normal operation. As productive working requires the user to be
near the machine at all time, these machines are very prone to accidents [15]. A similar
problem exists at robot workplaces: fast moving parts or equipped tools of industrial
robots, for example, pose a safety risk for any humans within the robots’ working
range. Therefore, robot workplaces are often caged in completely and the robot is
stopped while there are people within the cage, making it impossible for humans to
work together with the robot in a so-called joint-action scenario [16]. To avoid this
issue, sensor-based safety technology for industrial robots has been researched since
the early 1980s [17] and is still essential for the further development of human-robot
collaboration today [18]. Both applications can greatly benefit from the imaging
technology proposed in this work.

State-of-the-art safeguarding equipment such as vision-based protective devices uses
a technique known as muting to allow workpieces or moving parts of robots to enter
dangerous areas while all other objects, e.g., human limbs, will cause an emergency
stop [19]. This technique requires detailed model knowledge about the application
and thus restricts joint-action scenarios for humans and robots. By distinguishing
human limbs from workpieces through material classification, muting techniques
can be implemented in a smarter and much more flexible way. This approach is
currently being investigated at the BRSU in the context of the research project SPAI.
In Section 8.2, findings and results of this research project are summarized and an
outlook to future work on such application scenarios is given.

1.2 Contributions

This dissertation presents a concept of an image-based skin detection and face ver-
ification system. Some parts of this work have already been presented in scientific
publications: the basic idea was first presented at the Imaging and Applied Optics
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congress [20]. A more detailed description and first evaluation has been published in
the Journal of Sensors [21]. A paper presented at the Conference on Biometrics [22]
focuses on the detection of spoofing attacks, while a paper presented at the SIAS
conference by Sporrer et al. [23] proposes a similar camera system for applications in
the safety domain. Another paper currently in preparation [24] deals with the prob-
lem of motion compensation for multispectral imaging systems that capture spectral
information (time-) sequentially.

The contributions of this work are:

• A conceptual reference design and building blocks for an active multispectral
SWIR camera system based on field sequential waveband capturing (FSWC).

• A first analysis of approaches to motion compensation for multispectral FSWC-
based imaging systems. The major challenge for these approaches is the inten-
sity consistency assumption made by most motion detection techniques, which
is in general not fulfilled by waveband-sequential multispectral imagery.

• A robust method for skin classification based on spectral signatures of material
surfaces. It extends the work of Schwaneberg [25] to imaging sensors and uses
both fast thresholding and more precise machine learning based classifiers in a
hierarchical approach.

• A novel and robust cross-modal approach to detect spoofing attacks even in the
presence of (partial) disguises and masks that enhances existing solutions based
on the visual (VIS) spectrum. It ensures the authenticity of a face captured with
a multispectral SWIR camera and verified against a known face given by a VIS
image in a cooperative user scenario.

• A practical system design, setup and implementation of an active multispectral
camera system optimized for skin detection with a focus on face recognition.
The system acquires four-band multispectral image cubes in the SWIR range in
real-time with optimized illumination homogeneity.

• An in-depth evaluation of the imaging system with respect to imaging quality,
environmental influences and motion compensation, as well as skin detection
and anti-spoofing performance. For this evaluation, a set of databases has been
created using both an RGB camera and the presented multispectral camera
system. The motion compensation performance is evaluated on a database
of video sequences showing different test scenarios. Skin detection accuracy
is evaluated on another database that contains spectroscopic measurements of
skin taken from several selected locations on faces and limbs, as well as portrait
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pictures of more than 150 participants of an extensive study. In addition, a
third database contains images of spoofing attacks with a focus on masks and 3-
dimensional facial disguises that are used for the evaluation of the anti-spoofing
performance.

All created databases are available to the research community on the website of the
Institute for Safety and Security Research (ISF) at the BRSU: https://isf.h-brs.de.

1.3 Outline

The contents of this dissertation are divided into eight chapters. Chapter 2 describes the
fundamentals and techniques related to multispectral SWIR imaging, skin detection
and face recognition, as well as the terminology and notation used within this work.
Chapter 3 introduces design goals and the reference design for the skin detecting
camera system and presents prior work in the related research fields.

In Chapter 4, approaches to motion compensation for field-sequential multispectral
imaging systems are discussed. The proposed approach to skin detection on pixel-
level based on the spectral signature of different material surfaces is described in
Chapter 5, which also presents two methods to combine skin detection with face
recognition in order to detect spoofing attacks.

Based on these methods, Chapter 6 describes the system design, setup and im-
plementation details of the SkinCam system, which implements the reference design
proposed in Chapter 3. Furthermore, an analysis of the eye safety of the active illu-
mination module, as well as an approach to depth estimation based on focus shifts in
the different wavebands are presented here.

Chapter 7 presents an evaluation of the SkinCam imaging system and the proposed
methods for motion compensation, as well as pixel-level skin and image-level spoof
detection performance.

Finally, Chapter 8 summarizes the approaches and findings presented in this dis-
sertation and discusses aspects of possible future work and the use of the imaging
system for other applications.

https://isf.h-brs.de
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Chapter 2

Fundamentals

This chapter introduces the terminology and notation used in this dissertation. Fur-
thermore, it gives a general overview of fundamentals and techniques in the fields
that are relevant in the context of this work.

2.1 Terminology and Notation

2.1.1 Mathematical Notation

In this dissertation, pixel positions are denoted by their coordinates on the image plane
given in braces, i.e. (x, y). Vectors are marked with an arrow and single elements of
a vector are accessed by indices in square brackets: ~s[n] refers to the n-th element of
vector ~s. Estimations are marked with a hat, while precise or ground truth data is
expressed without marks, i.e. d̂ ≈ d. Similarly, interpolation results are marked with
a tilde, e.g. C̃i is the result from interpolating between Ci−1 and Ci+1. A change or
difference of a variable is denoted by preceding it with a delta, i.e. ∆d.

All additional notation will be described at first use.

2.1.2 Multispectral and Hyperspectral Imaging

Multispectral and hyperspectral imaging systems are capable of capturing high-
density spectral information of a scene or object surface and thus offer several ad-
vantages over conventional single- or three-channel cameras. They are used for a
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variety of applications, such as remote sensing, astronomy, agriculture, medicine or
food quality control [26], as well as high quality color image reproduction and con-
servation of art [27]. Multi- or hyperspectral imaging is not restricted to the visual
(VIS) spectrum alone, but might also extend to the infrared spectral range [28].

The datasets acquired by these imaging systems usually consist of three dimensions:
besides the two spatial dimensions, there is an additional spectral dimension. They
are often referred to as multi- or hyperspectral image cubes [28–30], with every pixel
(x, y) having a corresponding spectrum denoted as vector ~s(x, y) instead of a single
(scalar) intensity value. A single “slice” of the image cube at a given waveband
yields a monochrome image that represents the intensity of the scene captured in this
waveband only. These slices are called waveband images or simply channels in this
work. A waveband is defined by its peak wavelength λp and its spectral bandwidth, or
full width at half maximum (FWHM) ∆λ0.5, respectively, which is measured between
those points on the sensor’s sensitivity curve at which the spectrum reaches half of
its maximum amplitude [31]. In digital systems, the spectrum ~s(x, y) is represented
in the form of a vector with n elements, where n is the number of wavebands. In the
literature and in the context of this work, ~s(x, y) is denoted as the spectral signature
of pixel (x, y) [32]. An example of a multispectral image cube is shown in Figure 2.1
on the next page, while Figure 2.2 illustrates the extraction of a low-density spectral
signature out of a remission spectrum that has been captured by a single pixel of a
corresponding imaging system.

The difference between multispectral and hyperspectral imaging is not clearly de-
fined in the literature. Usually, they are distinguished by the number and width of the
wavebands [29], with hyperspectral imaging having a much larger number of wave-
bands, covering a wide spectral range with high density, while multispectral imagers
usually only capture a few selected wavebands [6]. This work focuses on methods
that acquire images with a limited number of wavebands in a “staring imager” con-
figuration having a fixed 2-dimensional field of view and that allow to capture scenes
including moving objects or persons. Therefore, the term multispectral will be used
rather than hyperspectral in the following.

2.1.3 Simultaneous and Field-Sequential Waveband Capturing

Simultaneous acquisition systems capture spatial and spectral information of an im-
age simultaneously. For the acquisition of RGB color images in the VIS spectrum, for
example, most modern digital cameras rely on a filter array, such as the Bayer filter
mosaic, directly mounted on the surface of an image sensor to detect different wave-
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Figure 2.1: Illustration of a multispectral image cube. Waveband channels have been
colored similarly to Figure 2.2 for illustration purposes. Based on [30, Fig. 1.1].
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bands with neighboring pixels at the cost of a reduced light gathering capability [33].
The Bayer filter pattern is 50% green, 25% blue and 25% red in order to mimic the
spectral sensitivity of the human eye. To achieve a full color image, so called demo-
saicing algorithms have to be applied on the images captured using a Bayer filter.
These algorithms interpolate the missing color information of each pixel from neigh-
boring pixels, leading to a reduced spatial resolution of the final images. A different
approach is used by the Foveon sensor, which separates the spectral channels using a
grid of vertically stacked photodiodes by exploiting the different penetration depth
of light in different wavelengths [33]. This way, the highest possible light gathering
and spatial resolution is maintained. However, it’s spectral sensitivity is comparably
low. A third option is the use of 3CCD cameras, which use dichroic prisms to split
light into beams of different wavebands and acquire the different spectral channels
with three separate sensors [33]. This ensures high spatial resolution and spectral
selectivity, but requires precise spatial adjustment of the mirrors and sensors.

Despite their individual advantages and drawbacks, none of these simultaneous
acquisition techniques is well suited for multispectral imaging if a “customized” or
flexible selection of wavebands is required by a specific application, as complexity
and cost will increase drastically with the number of wavebands. Therefore, common
general purpose multispectral imaging systems use tunable or interchangeable band
pass filters in combination with a single sensor that is sensitive to the full spectrum of
interest. They acquire the spectral information of a scene by sequentially capturing
images of single wavebands and combining them into one multispectral image cube
in a second step. A common implementation of such systems uses bandpass (inter-
ference) filters on a rotating filter wheel in front of the camera, which is synchronized
to the camera’s exposure time [8, 27, 34]. A large variety of suitable filters with band-
widths of down to ∆λ0.5 ≥ 10nm are commercially available. An alternative to rotating
filter wheels are electronically tunable filters [28]). Compared to filter wheel systems,
they offer only slightly better spectral resolution with bandwidths of several nanome-
ters, but allow for more flexible configuration and higher numbers of wavebands.
Similarly, the active multispectral camera system presented in this dissertation uses
pulsed narrow band illumination instead of passive band pass filters to capture the
spectral information of a scene with a single sensor. All of these approaches capture
the spectral information of the scene (time-) sequentially. In the field of color imag-
ing, this method is called field sequential color capturing [35]. Following this definition,
this work will use the term field-sequential waveband capturing (FSWC) for this class
of imaging systems. For simplicity, image sequences acquired using field sequential
waveband capturing (FSWC) methods will further be called waveband sequential.
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All FSWC imaging systems share one common problem: dynamic scenes with no-
ticeable motion during the time required to capture all spectral channels will lead
to motion artifacts, as boundaries and edge details of moving objects will not match
between the different channels. Correcting these artifacts requires dense motion es-
timation to determine the direction and amount of motion for each pixel. Motion
estimation has a long and successful history in computer vision; an overview is given
in Section 2.5. However, existing state-of-the-art motion estimation techniques cannot
handle FSWC imagery properly, as it strongly violates the intensity consistency as-
sumption between adjacent channels, which most of these techniques rely upon [36].
Furthermore, FSWC motion compensation needs to be fast in order to be practically
relevant. In Chapter 4, the problem of motion compensation for FSWC imagery is
addressed in detail.

2.2 Physical Basis of SWIR Skin Detection

Already in 1955, Jacquez et al. [37] demonstrated that human skin has very specific
remission characteristics in the infrared spectral range: its spectral remission above
1.2µm is widely independent of the skin type, i.e., the absorption spectrum of melanin,
but mainly influenced by the absorption spectrum of water. This has been confirmed
repeatedly in more recent research [38,39]. In a study with 330 subjects with different
skin types and age, Schwaneberg [25] found a total variation of about factor two
between the remission intensities of the darkest and brightest skin sample (average
intensity over the full SWIR range), but identified very similar local maxima and
minima in the different spectra.

In addition, the spectral remission of most other materials differs strongly from that
of skin: Figure 2.3 on the following page shows the remission intensities of different
material surfaces, including typical workpieces as well as examples of spoofs (printed
and painted materials), compared to remission spectra of human skin in the visual
and infrared spectral range up to 1.6µm. Here, six different skin types, denoted as
type 1 (very light colored) to 6 (very dark colored), are distinguished as proposed
by Fitzpatrick [40]. RGB and (false color) multispectral short-wavelength infrared
(SWIR) portrait images of six persons representing all of these skin types are presented
in Figure 2.4 on the next page. As expected from the spectra, the obvious differences
of the skin color in the RGB images are almost negligible in the SWIR images.
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Figure 2.3: Spectral remission intensities of skin and different materials.
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Figure 2.4: Visual spectrum (RGB color) and short wave infrared (false color) portrait
images of skin types 1 to 6 according to Fitzpatrick [40].
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2.3 SWIR Imaging Technology

Digital imaging sensors consist of an array of semiconductor detectors that is located
at the focal plane of the imaging system and, thus, typically called the focal plane
array [41]. Each detector in the focal plane array represents one pixel element or pixel
in the final image. To detect a photon with a semiconductor detector, the photon’s
energy must be higher than the energy bandgap that separates the semiconductor’s
conductance band from the valence band in order for it to create an electron-hole pair.
As the energy of a photon is determined by it’s wavelength [42], the wavelength has
to be lower than a specific cutoff wavelength λcutoff. This cutoff wavelength depends
on the energy bandgap in the semiconductor material and can be calculated by

λcutoff =
hc0

Eg
≈

1.24
Eg

, (2.1)

where Eg is the energy gap in electron volts [42], h ist Planck’s constant and c0

the speed of light. As silicon, which is most commonly used in imaging sensors and
photodiodes for the VIS spectrum, has a bandgap of Eg ≈ 1.08eV, its cutoff wavelength
is at λcutoff ≈ 1.15µm [41]. Thus, silicon-based detectors are not suited to capture the
characteristic spectral properties of human skin in the SWIR spectral range. In order
to be able to detect photons in higher wavebands, a material with smaller bandgap
than silicon has to be used.

A detector’s capability to transform incident radiation into electric output is de-
scribed by its responsivity, which measures the electrical output (in amperes) per
incident radiant power (in watts) [42] and depends on the quantum efficiency of the
used semiconductor material. The quantum efficiency denotes the ratio of generated
electrons to incident photons. As shown in Figure 2.5 on the following page, with
respect to its spectral responsivity, indium-gallium-arsenide (InGaAs) is a very well
suited semiconductor material for the detection of the SWIR spectral range that is most
interesting for skin detection. Due to its lower bandgap of Eg ≈ 0.73eV compared to
silicon, InGaAs has a higher cutoff wavelength of λcutoff ≈ 1.7µm [41].

Besides responsivity, the strength and influence of noise is another relevant charac-
teristic of a semiconductor detector. The most important sources of detector noise are
shot noise and thermal noise [42]. Shot noise results from random arrival of photons
at the detector [41]. It increases proportionally to the square root of the photo current,
dark current and background radiation of the detector. In contrast to this, thermal
noise originates in the thermal agitation of the electrons in the semiconductor ma-
terial [42] and is independent of the incident power. Semiconductor materials with
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Figure 2.5: Spectral responsivity of photo detectors made of silicon (Si), germanium
(Ge) and indium-gallium-arsenide (InGaAs). Adapted from [42, Fig. 1.70].

smaller bandgap are more susceptible to thermal noise than detectors with larger
bandgaps [41] and thus require more cooling to achieve similar thermal noise levels
to materials with larger bandgaps. Common InGaAs detectors, for example, are op-
erated at 280 K, while silicon detectors are operated at temperatures of around 300 K
and thus do not require active cooling at typical room temperatures.

The quality of a detected signal can be expressed by the signal to noise ratio (SNR),
which is defined as the ratio of the effective incident power to the effective noise
power [42] and typically given in decibel (dB):

SNR = 10log
Psig

Pnoise
dB. (2.2)

An increase of the signal power Psig by additional incident power ∆P will also lead to
an increase of the noise power Pnoise due to additional shot noise. However, the SNR
will get better anyways, as shot noise increases only with the square root of ∆P:

SNR’ = 10log
Psig +∆P

Pnoise +
√

∆P
dB. (2.3)
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When describing characteristics of semiconductor detectors, common parameters also
include the noise equivalent power (NEP), which is defined as the signal power which
is required to achieve an SNR of 1 and measured in watts, as well as the specific
detectivity D∗ [41], which is the inverse of the NEP normalized to the detector’s
photosensitive area A and frequency bandwidth BW with

D∗ =

√
A ·BW
NEP

. (2.4)

Finally, a parameter often stated by camera manufacturers is the dynamic range
(DR). Dynamic range of an image sensor is defined as the ratio of the largest signal
that the detector can record without saturation Qmax to the smallest signal that can
still be detected [43]. Similar to the SNR, it is often expressed in dB. Here, the smallest
signal is defined as the standard deviation of the readout noise σreadout, which is
measured under dark conditions. Thus, the dynamic range denotes an upper limit
for the achievable SNR of an image sensor and is given by

DR =
Qmax

σreadout
. (2.5)

In future SWIR imaging systems, graphene might play an increasingly important
role: recent research has shown that this two-dimensional crystalline material allows
for very fast and sensitive detection of radiation in a very large spectral range, as
graphene does not have a bandgap [44]. Projected NEP and specific detectivity are
similar or even better than that of current InGaAs detectors. However, such detectors
are not available on the market yet, as further research is needed to enable large-scale
production and to improve readout times.

2.4 Chromatic Aberration in Optical Systems

Optical systems are typically designed and described based on “Gaussian optics”,
which is a simplified mathematical model using paraxial approximation. It as-
sumes ideal conditions and perfect, reversible reproductions of object points to image
points [45]. For real optical systems, deviations from this model are inevitable, not
only due to flaws in the production of lenses, but also due to the wave nature of
light that is not taken into account by the model. These deviations are the cause of
different image defects, which are called aberrations [45]. Some of these aberrations
are independent of the wavelength of the light and thus occur even for monochro-
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matic light, i.e., light of only one small waveband. These include coma or distortion,
for example. The manufacturer of an optical system such as a camera lens can try
to optimize the design in order to minimize these aberrations to a negligible level.
Besides these monochromatic aberrations, there are also chromatic aberrations, which
are caused by dispersion and result in two different effects [45]:

Transversal or lateral chromatic aberrations occur when light of different wave-
lengths is refracted at different angles due to a wavelength-dependent refractive
index of a lens. Therefore, a single lens is not capable of focusing light of differ-
ent wavebands to the same point on the image plane, unless it comes from an
object point located on the optical axis.

Longitudinal or axial chromatic aberrations are caused by a shift in the focal length
for light in different wavelengths, as the focal length also depends on the refrac-
tive index of the lens. As a result, a lens can only be correctly focused for light
of one single wavelength, while other wavelengths will be out of focus, which
leads to blur in the final image.

If the wavebands of interest are known in advance, e.g. for RGB cameras, manufac-
turers can address this issues by designing optical systems that use multiple lenses
with opposite dispersion characteristics that cancel each other out [45].

2.5 Motion Estimation and Optical Flow

Detecting motion in an image sequence and estimating the motion direction and
velocity is a very complex task [46]. The optical flow describes the velocity of apparent
motion at the image plane as observed by a camera. It can be estimated by finding
displacement vectors between features in two consecutive images A and B. If vectors
can be found for every pixel, the set of displacement vectors is denoted as displacement
vector field FA→B. Besides dense optical flow calculation, displacement vectors can also be
determined by block matching methods. By applying the inverted displacement vector
field FA←B on image B, the apparent motion between the images is compensated. For
an FSWC-based camera system used in dynamic environments, this process must be
fast enough to allow for real-time compensation of image sequences.

As a fully comprehensive survey of motion estimation and optical flow techniques
is beyond the scope of this work, interested readers are referred to the work of
Fortun et al. [47] to get a deeper insight into optical flow computation methods, and
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to the survey on block-based methods by Jakubowski and Pastuszak [48]. Here, the
description of methods is limited to those used in the context of this work.

The original approaches on the calculation of optical flow (OF) have been proposed
by Horn and Schunck [49] as well as Lucas and Kanade [50]. They assumed that
an object’s intensity is constant between subsequent frames and every change in a
pixels brightness must be due to motion. By using the brightness gradients and a
constraint on motion smoothness, the flow velocity and direction can be computed.
Brox et al. [51] extended this assumption by a gradient constancy constraint to deal
with slight changes in brightness and an enhanced smoothness assumption. Another
approach by Zach et al. [52] is based on total variation (TV) regularization using the
L1 norm (TV-L1) and claims to be very robust against illumination changes and occlu-
sions. Both, Brox et al. and Zach et al., are available as real-time capable GPU-based
implementation. Werlberger et al. [53] proposed to replace TV regularization with
the Huber norm (Huber-L1) to further improve the results. They presented a library
called FlowLib, which contains GPU accelerated implementations of their algorithm
in different variations as well as Lucas-Kanade OF. Although the Middleburry OF
ranking [36] lists a number of methods that have been proposed in the meantime and
perform better in terms of accuracy, these algorithms can still be counted to the state
of the art when processing time is taken into account as well.

In more recent work, Werlberger [54] proposed the use of alternative data terms
than pixel intensity to better compensate for violations of the intensity constancy
assumption: normalized cross-correlation (NCC), the census transform and consis-
tency of gradients. All of these data terms represent the structure of the image content
rather than the color or gray level intensity.

The basic idea of block matching (BM) is to divide one of the images into macro
blocks with a block size of several pixels and to find the best match for each of these
blocks within the second image using error functions such as the sum of absolute
differences. To keep processing time low, the search range is limited to a maximum
displacement (p-value). Testing every possible block displacement within this range
is called full search. As boundaries of moving objects will not necessarily match with
the macro blocks, blocking artifacts might occur in the compensated images. To avoid
this, different techniques such as overlapping blocks, adaptive block size, multiscale
approaches and filtering have been proposed [55]. To further reduce processing
time, more efficient search strategies can be applied that try to reduce the number of
calculations at the cost of accuracy [56]. Block matching can be implemented with
a high degree of parallel computation using GPUs or FPGAs to achieve real-time
performance.



20 CHAPTER 2. FUNDAMENTALS

2.6 Machine Learning Methods for Data Classification

In order to classify an observation or instance of data such as the spectral signatures
of material surfaces automatically in two or more categories or classes, a classifier is re-
quired. While classifiers for simple problems can be defined by previous knowledge,
for example, when black and white marbles are to be classified by their color, more
complex problems require sufficient training data to find a suitable classifier. The
process of training a classifier automatically using training data is called supervised
machine learning [57]. A variety of methods for the design and training of classifiers
has been proposed by researchers. In this work, the use of binary decision trees, ran-
dom forests and support vector machines is evaluated for the problem of classifying
spectral signatures into one of the two categories “skin” and “non-skin”.

2.6.1 Binary Decision and Model Trees

Binary decision trees can be used to classify instances of input data into exactly one
of n ∈ N distinct categories by performing a number of binary decisions that are
arranged in the form a tree [57]. For every instance, decisions are applied during
the traversal on one path along the edges of the tree from its root until a leave is
reached, which is associated to one of the specified categories. An example for a
decision tree is shown in Figure 2.6 on the next page. Due to the tree structure,
the computational costs of traversal depend only on the depth of the tree d. As each
decision only consists of one comparison of a single variable with a defined threshold,
decision trees can be implemented very efficiently even on microcontroller systems
with limited processing power and limited memory.

For the creation and training of a binary decision tree, different learning algorithms
have been proposed in the literature, most of which follow a similar approach [57].
This basic approach has been introduced by Quinlan [58]. His ID3 algorithm and its
successor, the C4.5 algorithm [59], construct decision trees in a top-down approach
starting with the root of the tree and determine statistically how well each single
attribute of the data classifies the training examples. If the attribute is numerical
(one vector component of a spectral signature, for example), an optimal threshold to
separate the training data using only this attribute as good as possible is calculated.
This is evaluated using the information gain, which measures the separation of the
training data with respect to their actual class and is calculated based on the entropy
of all classes in the resulting subsets [57]. Finally, the threshold and attribute with the
highest information gain is chosen for the first test and decision at the root node. Then,
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A>0

B>0                                   C>0

C>1               A>1              C>1               B>1

c1       c2       c1      c2       c2      c1       c1      c2

true        false

true        false true        false

true        false true        false true        false true        false

Figure 2.6: Example of a simple binary decision tree with depth d = 3 [25, Fig. 2.5].

descendants are created below the root node for both decisions and the procedure is
repeated iteratively on the training examples in the remaining subsets.

As decision trees are not capable of learning and predicting continuous data values,
Quinlan [60] also introduced the M5 learning algorithm that constructs so-called model
trees which represent piecewise linear models. Instead of target classes, the leafs of a
model tree are either simple output values or linear models (i.e. functions of the input
value) that are created by combining lower branches using regression techniques.

2.6.2 Random Forests

A major disadvantage of binary decision tree learning is the tendency to overfitting:
noise and outliers might lead to the growing of branches that specialize on these
instances and the ability of the tree to generalize and classify previously unseen data
correctly suffers [57]. Therefore, random forests have been proposed as an improvement
of binary tree learning with advantages especially for large datasets with a high
number of attributes [61]. Instead of constructing a single tree, this learning technique
constructs a collection of decision trees which vote for the most popular class of a given
instance in order to classify it. The individual trees are trained on a random subset of
the available training data and also use only a random subset of the set of attributes
to avoid specializing on specific training data or a limited number of very strong
features [61]. Using a large number of trees, this method reduces the generalization
error introduced by overfitting the classifier to the training data significantly.
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2.6.3 Support Vector Machines

A support vector machine (SVM) is a supervised learning model based on the idea of
using linear hyperplanes to separate instances of input data into one of two classes by
mapping their feature vector non-linearly into a high dimensional feature space, thus
allowing to separate even non-linearly separable data [62]. Although originally de-
signed by Cortes and Vapnik for two-class classification problems only, the technique
has since been extended and can be applied to multi-class problems (by subdivision
into multiple two-class problems) and regression problems as well [63].

The original idea of using hyperplanes for the separation of data was introduced
by Rosenblatt in 1958 [64], who proposed the perceptron as a theoretical brain model
capable of learning, recognition and classification of data. The perceptron algorithm
is an iterative procedure that finds a function

f (~x) =

1 if 〈~w,~x〉+ b > 0

0 otherwise
(2.6)

which classifies a new data instance using its attribute vector ~x ∈ X× {−1,1}, with X
being a dot product space, as either a positive or a negative instance. Here, ~w is a
vector of weights with the same dimension as ~x, 〈~w,~x〉 denotes the dot product of ~x
and ~w, and b is a bias or offset. For each training sample, the output of the function
y = f (~x) is calculated using the current weights and compared to the actual (desired)
result d. Using a specified learning rate α, 0 ≤ α ≤ 1, all weights are updated with
ŵi = wi +α(d− y)xi for all attributes. This procedure is repeated until the error is below
a specified threshold. If the problem is linearly separable, the algorithm will converge
to a solution that separates all training samples correctly [63].

Vapnik improved this approach by presenting a method that finds an optimal hy-
perplane, which he defined as a hyperplane that separates two classes with maximal
margins on either side, thus ensuring a better generalization ability and robustness
to previously unseen data samples [62]. It can be seen from Equation (2.6) that all
possible hyperplanes are defined by

〈~w,~x〉+ b = 0, ~w ∈ X, ~x ∈ X, b ∈R, (2.7)

where ~w is orthogonal to the hyperplane as described in [63]. To find the decision
function y = f (~x) with optimal margins, the objective function τ(~w) = 1

2‖~w‖
2 has to be

minimized while satisfying the inequality constraint yi(〈~xi, ~w〉) ≥ 1 ∀i = 1, . . . ,m. From
this primal optimization problem, the so-called dual problem can be derived, which is
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easier to solve and can be shown to have the same solution [63], by introducing
Lagrange multipliers αi ≥ 0 and expressing ~w as a linear combination of training vectors:

~w =
m∑

i=1
αiyi~xi. Then, the dual problem is given by

max
α∈Rm

m∑
i=1

αi−
1
2

m∑
i=1

αiα jyiy j〈~xi,~x j〉, (2.8)

with αi ≥ 0 ∀ i = 1, ...,m and
m∑

i=1

αiyi = 0 (2.9)

and leads to the following decision function [63]:

f
(
~x
)

= sgn
(
〈~w,~x〉+ b

)
= sgn

 m∑
i=1

αiyi〈~x,~xi〉+ b

 , (2.10)

with sgn(z)


−1 if z < 0,

0 if z = 0,

1 if z > 0.

All vectors with αi > 0 are denoted as support vectors and are located directly on the
margin. All other vectors can be discarded for the calculation, as they will not have
an influence on the hyperplane. An example of a resulting optimal hyperplane in a
two dimensional space is illustrated in Figure 2.7 on the next page.

The described hyperplane can only be used to classify linearly separable datasets.
Therefore, Cortes and Vapnik [62] proposed to map non-linearly separable input data
from the input space X into a feature space H of higher dimensionality, in which the
data is linearly separable, by using a transformation function Φ : ~xi ∈ X→ x̃i ∈ H .
To reduce the computational costs, the so-called kernel trick is applied by using a
positively defined kernel k as substitution for the Euclidean dot product [63] with

〈Φ
(
~x
)
,Φ

(
~xi

)
〉 = k

(
~x,~xi

)
, (2.11)

which leads to the final decision function

f
(
~x
)

= sgn

 m∑
i=1

αiyik
(
~x,~xi

)
+ b

 . (2.12)
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support vectors

hyperplane
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margin

{ x | <w,x> + b = 1 }

{ x | <w,x> + b = 0 }

{ x | <w,x> + b = -1 }

y = 1y = -1
Class 1: Label y = 1

Class 2: Label y = -1

R

R

Figure 2.7: Example of linear separation of two classes using a hyperplane with
optimized margins [25, Fig. 2.3], compare to [63, Fig. 1.5].

In order to be more robust to noise, errors or outliers in the training data, Cortes and
Vapnik [62] additionally proposed a derivative of this method with soft margins, which
introduces slack variables ξi ≥ 0 to allow violations of the optimization constraints.
Each violation leads to an increase of ξi. Thus its sum, scaled by a positive constant C,
is added to the optimization problem in order to find a balance between the acceptance
of errors and the size of the margins:

min
~w∈X,ξm∈R

1
2
‖~w‖2 +

C
m

m∑
i=1

ξi,

with yi(
〈
~xi,w〉

)
≥ 1−ξi and ξi ≥ 0 ∀ i = 1, ...,m.

(2.13)

This derivative is denoted as C-SVM and will be used in the context of this work.

2.6.4 Evaluation of Classification Performance

To evaluate the performance of classifiers, a common notation has been established
in the literature: correct classifications of the target class (here, “skin”) are called true
positives (TPs), while correct classifications of the non-target class (here, “non-skin”)
are called true negatives (TNs) [65]. Incorrect classifications are called false positives
(FPs) if instances of the non-target class are falsely mapped to the target class (i.e.
“non-skin” samples are classified as “skin”), or false negatives (FNs) if instances of
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the actual target class are falsely mapped to the non-target class (i.e. “skin” samples
are classified as “non-skin”). This data is often presented in a confusion matrix and
used to calculate the performance metrics accuracy and precision [66]:

Accuracy =
TP + TN

TP + FP + TN + FN
(2.14)

Precision =
TP

TP + FP
(2.15)

The ratio of true positive outcomes compared to the total number of instances is
denoted as true positive rate (TPR). Similarly, the share of the other possible outcomes
are denoted as true negative rate (TNR), false positive rate (FPR) and false negative
rate (FNR), respectively. TPR and TNR are often also denoted as sensitivity and
specificity [65].

2.7 Face Recognition

2.7.1 Categorization and Processing Flow

Face recognition is used for a variety of applications. Most of these applications
require that users of the face recognition systems must be known to the system, i.e.,
their biometric features must have been added to the system’s database. This process
is called enrollment. The different applications can be roughly categorized by the used
operating modes of the face recognition system and their usage scenarios [67]. The
two operating modes are face verification and face identification:

Face verification compares a query face image with a known face image of a person
whose identity is being claimed in a one-to-one matching process. This person
has to be enrolled in the face database of the face recognition system in advance.

Face identification compares a query face image with multiple face images in a face
database of previously enrolled persons in a one-to-many matching process.
Here, no specific identity is being claimed. Instead, the system attempts to find
the best match and, thus, identify the person shown on the query image.

The user scenarios are defined by a user’s cooperation with the process [67]:

Cooperative user scenarios denote applications in which the user is willing to co-
operate with the system in order to gain access or to be granted a requested
privilege. Examples for these applications are access control systems or eGate
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systems for automated passport control; see Section 1.1.1. Here, a user can be
expected to present his face to the recognition system in a favorable way, for
example by removing glasses or headwear and in frontal pose.

Noncooperative user scenarios differ from cooperative user scenarios by the fact
that a user does not know that his face is being captured or does not want to be
recognized, which renders this scenario much more difficult to handle. Typical
application scenarios are found in the field of surveillance.

In this dissertation, the focus with respect to face recognition is on face identification
and verification applications in cooperative user scenarios.

Query Image Enrollment 
Database

Match?

Face and 
Landmark 

Localization

Face 
Normalization

Feature
Extraction

Feature
Matching

Face
and

Landmarks

Aligned
Face Features

Accept /
ID known

Reject /
Unknown

yes no

Figure 2.8: Processing flow of a face recognition system. Adapted from [67, Fig. 1.2].

The face recognition process typically consists of four building blocks: face de-
tection and landmark localization, normalization, feature extraction and, finally, the
actual face recognition or matching [67]; see Figure 2.8. In face detection, the location
and scale of a face in the query image is estimated and the facial area is segmented
from the background. Then, the location of the facial landmarks such as eyes, nose and
mouth is extracted by a landmarking algorithm. Their exact location is required even
for recognition algorithms that don’t rely on geometrical constraints [68].

In the face normalization step, the image of the face is normalized with respect to
both illumination and geometrical alignment [67]. The latter is achieved by applying
affine transformations on the face image based on the locations of the detected land-
marks and cropping it afterwards to match a defined standard frame. The following
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feature extraction step uses this aligned image to detect specific features, the type of
which strongly depends on the type of classification or matching technique used for
recognition [68]. Finally, the feature matcher compares the features extracted from the
query image to the features of a specific identity (verification) or all known identities
(identification) that are stored in the enrollment database. If a match is found with a
confidence value that is above a predefined threshold, the query image is accepted or
the ID of the identified person is displayed.

2.7.2 Overview of Techniques and Approaches

Especially the matching of facial features in the last step of the processing flow is the
biggest challenge of face recognition systems [67]. A variety of different methods to
address this problem has been proposed since the development of the first automated
face recognition system in 1973. The different approaches can be classified into three
categories: structural feature-based methods using geometry and/or appearance of
facial features, holistic template matching methods, as well as hybrid methods, which
combine both approaches in one classifier [68]. The geometry-based approaches were
used especially in the early development phase of face recognition systems [67].
They have advantages with respect to data reduction and robustness to varying
illumination conditions and poses, but do not use the information contained in the
appearance or texture of a face. In contrast to this, the holistic methods are strongly
relying on the overall appearance and thus require a large amount of training data to
train effective classifiers, but achieve significantly higher accuracy in face recognition.

Principle component analysis (PCA) and linear discriminant analysis (LDA) are
two prominent examples of holistic methods. PCA tries to find the most relevant
features in a set of images and uses these as basis vectors in the face image space,
which are called Eigenfaces, to represent each individual face as a linear combination
of them [69]. LDA is closely related to PCA, but attempts to model the differences
between faces rather than the similarities. It is used in the approach called Fisherfaces,
which was found to perform much better than PCA for face recognition [69]. For
more detailed information on the history of face recognition methods, please refer
to the comprehensive survey by Zhao et al. [68], which contains methods that were
proposed for face recognition until 2003.

More recently, filter-based methods for the extraction of local (appearance) features,
such as the responses from applying Gabor filters on the face images or the calculation
of local binary patterns (LBPs), have been proposed [67, 70]. Especially LBPs were
found to be very successful. LBP features are constructed by dividing the image into
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several regions and thresholding all pixel values in this region with the value of the
pixel in the center. The result of all pixels is considered as a binary number and used
as image descriptor [70]. Lately, Taigman et al. [71] presented a deep neural network
trained on face recognition. A neural network is very similar to the perceptron (see
Section 2.6.3), but consists of multiple layers that are connected with each other. The
authors reported a performance that is significantly better than the state of the art.

2.7.3 Face Matching Between SWIR and VIS Images

In the context of this work, face images captured in the SWIR spectral range will be
used for face recognition. If these images could be matched to an already existing
enrollment database created using VIS images, the applicability and acceptance of
SWIR-based face recognition systems could be significantly increased. As infrared
imaging with active illumination that is invisible to the human eye has advantages
for any face recognition approach [72], this problem has been addressed by several
researchers in the recent years. Although most of this prior work is based on the
spectral range below 1µm, the findings are still comparable to the images captured
by the system proposed in this dissertation.

In 2007, Yi et al. [72] proposed a correlation-based learning approach to match near
infrared (NIR) to VIS images and achieved a TPR of 93.1% with a FPR of 0.1%. Three
years later, Klare and Jain [73] combined different feature descriptors with an LDA-
based classifier and achieved a TPR of more than 94% with an FPR of 1%. In 2011,
Goswami et al. [74] presented a database and an evaluation protocol for the evaluation
of cross-spectral face recognition methods and evaluated a number of combined
methods on this dataset. They concluded that, given proper preprocessing, good
results can be achieved with LBP-based classifiers. In 2014, Zhu et al. [75] presented
a model called Transductive Heterogeneous Face Matching (THFM) that attempts to
solve the cross-spectral matching problem. This approach allegedly outperforms all
state-of-the-art approaches on relevant benchmarks and achieved a TPR of 99.66%
with an FPR of 1%.

Furthermore, it was found that several commercial of the shelf face recognition sys-
tems, including FaceVACS from Cognitec Systems GmbH, are also capable of solving
this cross-spectral matching problem with good performance [73]. In conclusion, the
use of SWIR images for query with a VIS-based database appears to be feasible.
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Chapter 3

Concept of a Skin-Detecting SWIR
Camera System

This chapter defines design goals for a skin detecting camera system and presents
prior and related work in the relevant research fields: skin detection in general,
multispectral imaging, motion compensation, as well as face verification and anti-
spoofing. Based on the formulated design goals, a reference design consisting of
several building blocks is proposed.

Publications: Design goals for a skin detecting camera system with a focus on face verification
and related work on skin detection have partially been published in [21]. Some portions of the
related work on multispectral imaging and motion compensation are included in [21, 24] and
the related work on facial anti-spoofing has been covered in [22].

3.1 Design Goals

In general, biometric face recognition systems imply strong requirements with respect
to robustness and speed of the detection. Here, robustness includes both accurate
detection under varying external conditions such as lighting and a reliable detection
of skin. Even though this work does not tackle any specific application scenario, the
following rather generic design goals can be formulated that allow the realization of
various applications:
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• The imaging system should be (widely) independent of ambient light. The
spectral distribution or any flickering of nearby light sources must not disturb
the skin detection process, see Section 6.1.

• The acquisition and processing time should be as short as possible.

• Moving objects must not lead to false classifications, see Section 3.2.2.

• Skin detection must work independent of a subject’s skin type, age or gender.

• Classification accuracy must be high enough to detect and reject both two- and
three-dimensional spoofing attacks, even if they are made of skin-like material,
see Section 5.2.

• Skin detection and face recognition must be matched to ensure that a recognized
face is valid, see Section 5.3.

• The operation range should cover practically relevant distances for indoor sce-
narios. For eGates, for example, typical distances are 1 m to 3 m.

It will be shown that none of the existing approaches can reach all of these goals.

3.2 Related Work

3.2.1 Imaging and Non-Imaging Skin Detection

This section focuses on work that is directly related to the approach proposed in
this dissertation, i.e. skin detection based on short-wavelength infrared (SWIR) radi-
ation. For skin detection by color in the visual (VIS) spectrum, please refer to the
comprehensive survey paper by Kakumanu et al. [76].

The advantages of the SWIR spectral range over the VIS spectrum for skin detection
have been confirmed in the literature repeatedly, for example in recent work by
Mendenhall et al. [77], who state that state-of-the-art skin detection methods based
on the VIS spectrum achieve true positive rates (TPRs) of ≈ 90% and false positive
rates (FPRs) of at least 2% and up to 15%. Using the SWIR spectrum, much better
results can be achieved. Prior and related work on this topic can be divided into two
categories: imaging and non-imaging approaches.
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(Non-imaging) point sensors

As early as 1985, Hacskaylo [78] patented an “automatic human body detector” based
on SWIR radiation: three narrow wavebands around 1.22µm, 1.50µm and 1.72µm
are analyzed using active (broadband) illumination and three detectors with different
narrow band pass filters. The remission intensities acquired by these detectors are
normalized and compared in order to detect the spectral signature of skin.

In 2005, Kilgore and Whillock [79] filed a patent describing a skin detecting sen-
sor based on the same principle that can be implemented using either one active
(broadband) illumination source combined with two spectrally selective detectors or
two active illumination sources emitting different wavebands and one broadband
detector. For both implementations, the two filters are used to divide the spectrum
of the radiation that is reflected from a surface material into a first waveband of ap-
proximately 800 nm to 1400 nm and a second waveband of approximately 1400 nm
to 2200 nm. To classify the surface material into “skin” or “non-skin”, a weighted
difference and threshold is applied on the two remission intensities. The exact same
patent was filed again in 2007 by Determan and Wunderlin [80].

Zhang et al. [81] described an approach based on light emitting diodes (LEDs) in
the two wavebands of about 850 nm and 1450 nm in combination with a respective
photodiode as detector. Compared to [79] and [80], this results in rather narrow
wavebands. The authors specifically expected a varying distance between the sensor
and the analyzed object and trained a support vector machine (SVM) classifier on
multi-distance reflectance data.

Schwaneberg et al. [25, 82] developed a similar yet more enhanced point sensor
for skin detection with a focus on safety applications. The sensor uses LEDs in
four wavebands around 830 nm, 1060 nm, 1300 nm and 1550 nm, which have been
selected as result of an extensive study with a total of 330 persons and avoid the
absorption band of water vapor, which is located in the range from 1340 nm to
1450 nm. Through extensive beam forming, the sensor can be used in operation
ranges of 0.1 m to 1.0 m. In contrast to all previous approaches, it is designed to
deal with environmental influences such as varying illumination and measures the
distance to an object surface with high accuracy in order to correct for distance-
dependent distortions in the remission intensities. Using an SVM-based classifier, it
achieves very high classification accuracy in all evaluated application scenarios. This
sensor system can be regarded as a predecessor of the system that is presented in this
dissertation.
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(Imaging) camera systems

A disadvantage of point sensors is their limitation to applications that do not re-
quire detailed spatial resolution. A single point sensor can neither be used for face
recognition, nor for the monitoring of large areas at robot workplaces. To address
such applications, imaging-based skin detection systems have been presented in prior
work.

Pavlidis et al. [5,83,84] demonstrated that the SWIR range has many advantages for
skin detection in general and for disguise detection in specific. They proposed a dual
band camera system, consisting of two co-registered cameras, with one camera having
a spectral sensitivity below 1400 nm (ideally 800 nm to 1400 nm) and the second
camera having a spectral sensitivity above 1400 nm (ideally 1400 nm to 2200 nm).
This way, both wavebands are captured simultaneously. Their system can work
with either sunlight or artificial illumination and uses a fusion algorithm based on
weighted differences to detect skin in the acquired images. Depending on the spectral
distribution of the illumination source, the weighting factors have to be adapted, as
the system is not independent of ambient light. Originally, their system was meant
to be used for the automatic detection of vehicle occupants to control the legitimate
use of freeway lanes that are reserved for car pools, i.e., cars used by more than one
person. The authors conclude that their system achieves very good skin detection,
as well as face and disguise detection capabilities compared to systems in the visual
spectrum, only limited when it comes to the detection of surgical face alterations,
where they see an advantage of systems using the thermal infrared range. In a later
publication of the group [85], they presented an extension of the system with a third
camera for the visual spectrum and a more advanced face detection approach that
included multi-band eye and eyebrow detection. Their system uses beam splitters to
allow all cameras to view the scene from the same vantage point in order to avoid
problems with image registration.

Chang et al. [86] presented a multispectral imaging system for face recognition ap-
plications that uses the near infrared (NIR) spectrum up to 1100 nm. Their imaging
system consists of a camera with an attached liquid crystal tunable filter and allows
to capture 12 wavebands in the range from 660 nm to 1100 nm using field sequential
waveband capturing (FSWC). The authors found that their approach increases the
face recognition performance in challenging conditions. However, they did not eval-
uate the influence of varying skin types, which still have an influence on remission
intensities in this wavelength range.
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At the U.S. Air Force Institute of Technology, Nunez and Mendenhall [6, 7] re-
searched the use of hyperspectral SWIR imagery to detect skin in the context of
remote sensing applications. The authors acquired images in 81 narrow spectral
bands from 900 nm to 1744 nm with a hyperspectral camera and introduced a de-
tailed reflectance model of human skin based on this data. For real-time and in field
use, the authors propose a multi-camera system to acquire images in distinct narrow
wavebands simultaneously using different band pass filters on each camera, further
described by Peskosky [87]. To avoid problems with image registration, this system
uses dichroic mirrors to split up the beam so that all cameras share one single lens
and view the scene from the same vantage point, similar to the approach of Pavlidis et
al. Both this and more recent work of the group [77] proposes a combination of the
VIS and SWIR spectral ranges.

Bourlai et al. [8] presented a multispectral SWIR image acquisition system with a
focus on face recognition that uses a single camera with an attached rotating filter
wheel. The filter wheel is equipped with five band pass filters with a full width at
half-maximum (FWHM) of 100 nm around the peak wavelengths 1150 nm, 1250 nm,
1350 nm, 1450 nm and 1550 nm. By synchronizing the camera’s integration time to
the filter wheel, the system can capture all five waveband images sequentially using
FSWC within 260ms, i.e., at a rate of ≈ 3.8 frames per second (FPS).

Bertozzi et al. [9] propose a camera with a broadband sensor sensitive to both the VIS
and SWIR spectral range from 400 nm to 1700 nm that is equipped with a Bayer-like
mosaic filter pattern directly on top of the pixel array to capture different wavebands
simultaneously. One clear filter is combined with three high pass filters with cut-off

wavelengths of 540 nm, 1000 nm and 1350 nm. By subtracting the acquired values
of neighboring pixels with different filters, multispectral images with the four wave-
bands of approx. 400 nm to 600 nm, 600 nm to 1000 nm, 1000 nm to 1300 nm and
1300 nm to 1700 nm can be calculated.

Due to the passive, filter-based system design, the spectral distribution of the
ambient illumination has a strong influence on the multispectral images acquired by
any of these systems. There are also individual disadvantages of all of these systems:
both the approaches of Pavlidis et al. and Peskosky are based on a very limited number
of wavebands, which leads to coarse spectral resolution and a low classification
performance when dealing with skin-like material surfaces. The system presented by
Bertozzi et al. suffers from a reduced spatial resolution due to the mosaic filter pattern
and uses comparably wide wavebands, which will also be a disadvantage with respect
to classification performance. The system by Chang et al. is not independent of varying
skin types and has a relatively slow acquisition speed, which also applies to the filter
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wheel system by Bourlai et al. In contrast to this, the approach proposed in this
dissertation uses active narrow band illumination instead of filters and combines
a comparably high acquisition speed with high spectral resolution. As shown in
Chapter 7, it is widely independent from ambient light and allows for a robust
detection of human skin.

3.2.2 Motion Compensation

Combined
(Uncompensated)

Channel 0
(t=0)

Channel 1
(t=1)

Channel 2
(t=2)

Figure 3.1: A waving hand recorded using field-sequential color capturing, with
channels captured at subsequent times t. When the channels are combined in a
multispectral image without motion compensation, the color breakup effect occurs.

All of the described FSWC methods require that a scene is static during the acqui-
sition time of a full multispectral image cube [31]. Otherwise, motion artifacts might
occur in the form of an effect called color breakup in color imaging [35]: boundaries and
edge details of moving objects will not match between the different spectral channels
and color fringes will appear in the final image. An example for such artifacts is
shown in Figure 3.1. Due to this issue, it depends on the specific application and ex-
pected amount of motion in the scene whether FSWC-based implementations can be
used for multispectral imaging with acceptable results. By compensating the motion
artifacts, its applicability can be greatly extended.

To the best of the author’s knowledge, there has not been any previous research
on motion compensation specifically for FSWC imaging systems. However, a similar
problem can be found in time of flight cameras: in order to acquire a full depth image,
a sequence of four phase images has to be captured. Object or camera motion during
the acquisition of the four phase images leads to motion artifacts in depth estimation
that need to be compensated.
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Lindner et al. [88] proposed a motion compensation approach based on optical flow
(OF) calculation using state-of-the-art algorithms for this purpose: OF is calculated
between each phase image Pi, i = 1, . . . ,3 and P0 and every Pi, i = 1, . . . ,3 is resampled
accordingly. Lefloch et al. [89] improved on this approach by reducing the required
number of flow fields F0←i for each depth image from three (F0←1,F0←2,F0←3) to two
(F0←2,F1←3), leading to faster processing times. The third flow, which is still required
for the compensation, is derived from F0←2 and F1←3. Using graphics processing units
(GPUs) for acceleration, this approach is capable of real time motion compensation
with ≈ 25 FPS. An even faster approach for applications with only small motion
displacements has been presented by Hoegg et al. [90]: in a first step, a binary motion
image Ib is calculated to restrict motion estimation to image areas with apparent
motion only. Then, motion flow is estimated for all pixels in Ib within a small window
for all phase images simultaneously by assuming a linear and constant motion and
calculating the error for all possible flow vectors within the motion window. To
further reduce processing time, the search space can be reduced by using the mean
direction angle of motion in a previous frame as an initial guess for the current frame.
Using a window size of five pixels, this method achieves processing times of ≈ 10ms
and frame rates of up to 100 FPS. Note that all of the aforementioned approaches
use the PMD-ToF cameras which offer the option to deliver the full intensity for each
phase image. Thus, standard optical flow methods can be applied here.

A different approach on motion artifact correction for ToF cameras that requires
significantly less computational effort has been proposed by Schmidt and Jähne [91].
Their method detects the phase images affected by motion artifacts for every single
pixel and reconstructs a valid pixel value from the previous frame, assuming that there
is at most one event leading to motion artifacts during these two frames. Furthermore,
this approach does not require full intensity images, but uses phase images only. A
related approach has been presented by Jimenez et al. [92] more recently, which
requires only one single frame for the detection and correction of motion artifacts
by reconstructing valid pixel values either from unaffected previous phase images
or from unaffected pixels within the local neighborhood. However, in contrast to
the approach by Schmidt and Jähne, the latter can not easily be adopted for imagery
acquired using FSWC due to its time of flight specific working principle.

In this dissertation, different approaches to motion compensation for waveband-
sequential image sequences will be presented and evaluated. As shown in Chapter 4,
even state-of-the-art algorithms need to be modified or extended by appropriate
preprocessing in order to achieve good results.
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3.2.3 Face Verification and Anti-Spoofing

Based on the two operating modes of face recognition systems, see Section 2.7.1, two
scenarios for spoofing attacks on these systems are distinguished in this work:

Counterfeiting of a foreign identity: here, an attacker tries to imitate the identity of
a specific person to attack face verification. A simple example for counterfeiting
attacks are the so-called presentation attacks using printed photos of another
persons face that are held in front of the attacker’s face.

Disguise of the own identity: here, an attacker tries to disguise his own identity to
avoid face identification, for example, by wearing (partial) masks, fake noses or
facial hair, or by applying make-up.

In the past few years, several researchers have addressed the problem of spoofing
attacks on face recognition systems. Although some countermeasures for such attacks
have been proposed, recent studies clearly point out that especially attacks with facial
disguises and masks are still a severe problem for current anti-spoofing techniques [1,
12, 93]. Due to the widespread availability of 3D scanners and printers, the creation
of facial masks has become much easier in recent years [93]. These masks can be
manufactured using different materials with varying textures and surface properties,
such as plastics, resin, silicon, rubber or latex. Applying paint or make-up makes the
visual appearance and texture of a mask nearly identical to a real face. In combination
with the variations found in human skin color and texture, distinguishing any possible
spoof from genuine human skin is a very difficult task using only the VIS spectrum [5].

In the following, the state of the art in the field of face anti-spoofing is presented.
The prior work is divided into two categories: approaches that are based on the visual
spectrum alone and approaches using different or additional modalities.

Anti-Spoofing in the Visual Spectrum

As most face recognition systems rely on inexpensive monochrome or color cameras
for the VIS spectrum, there is a large variety of approaches to anti-spoofing that use
image processing based on these images only. Presentation attacks with still images
can effectively be detected using motion based approaches: Kollreider et al. [94], for
example, proposed to analyze and compare the trajectories of face parts by optical flow
estimation. A similar approach has been presented by Wang et al. [95]: their method
tracks facial features to recover the 3D structure of a (real) face. A different method
by Anjos and Marcel [96] relies on the detection and correlation of motion patterns
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between head movements and the scene context. All of these methods require several
images or a video sequence as input and can be deceived with a so-called replay
attack by displaying a video sequence on a mobile device, for example.

According to Nixon et al. [11], different challenge-response methods have been
described in the literature and implemented in commercial software, for example
requiring the user to blink or smile at the right time or to repeat randomly generated
phrases. If such measures are sufficiently random and comprehensive, they can
significantly increase the difficulty to deceive a recognition system using presentation
or replay attacks at the cost of reduced user comfort and recognition speed.

Another approach to spoof detection is the analysis of the texture of a face or
the detection of image artifacts on a presented photo or video spoof. Maattaa et
al. [97] were among the first researchers who exploit changes in the micro textures
of an image during re-capturing. A similar method is used by Yang et al. [98], who
proposed a component-based face coding approach to detect spoofs based on micro
texture differences. The authors demonstrate good performance on three standard
databases containing spoofing attacks using printed photos and videos on mobile
devices. More recently, Mei et al. [99] combined spatial and temporal information
in a new descriptor that outperformed the previous state of the art. Specifically for
spoofing attacks using mobile devices, an approach by Buciu and Goldenberg [100]
relies on the detection of oscillating patterns, while Patel et al. [14] described a method
to detect moiré pattern aliasing artifacts. Both kinds of image artifacts occur when
images or videos shown on a screen are recaptured by the face recognition system.

By combining different approaches, both reliability and applicability can be in-
creased. Komulainen et al. [101], for example, proposed a combination of motion
and texture analysis, while Yan et al. [102] combined facial motion with background
consistency and an analysis of image banding effects.

However, none of these approaches sufficiently addressed the problem of detecting
(three-dimensional) facial masks. By principle, they can neither be detected by 3D
structure or scene context analysis, nor by challenge-response methods or the detec-
tion of image artifacts. Distinguishing masks with applied make-up from faces with
applied make-up will also be difficult for any texture analysis method. Therefore, the
approach proposed in Chapter 5 of this dissertation focuses especially on such masks
and partial disguises and can detect them reliably, as shown in Chapter 7.
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Anti-Spoofing Using Different Modalities

A variety of approaches to address spoofing attacks using additional modalities have
been proposed in prior work. The acquisition of 3D depth images allows to reliably
reject presentation and replay attacks with printed photos or mobile devices, as they
consist of a flat surface [11]. To further detect attacks using masks, Kose and Duge-
lay [103] presented an approach that combines the texture analysis of 2D facial images
from [97] with 3D depth images. However, their results were still far from reliable.

Dhamecha et al. [104] proposed the combination of images acquired in the visible
and thermal infrared (TIR) spectra to detect spoofing attacks. They define patches
on a detected face, classify each patch as authentic or disguised and use only the
authentic patches for recognition. A shortcoming of this approach is that the patches
are rather big and that small but possibly important details might be overlooked.

The most promising results so far have been achieved using multispectral SWIR
imagery. Pavlidis and Symosek [5] described an approach for face and disguise
detection using two co-registered SWIR cameras with a sensitivity range of 800 nm
to 1400 nm and 1400 nm to 2200 nm, respectively. Their imaging system is described
in Section 3.2.1 on page 30. The described detection method fuses the images using
weighted differences and applies a threshold to distinguish skin from other materials.

Zhang et al. [81] presented a scanning sensor based on LEDs in the two wavebands of
about 850 nm and 1450 nm in combination with a respective photodiode as detector. It
serves as addition to a common RGB color camera for face recognition and introduces
a spoof detection mechanism by distinguishing real skin from disguises at one single
point in front of the camera. Due to this working principle, the system is susceptible
to attacks using specifically prepared (partial) spoofs.

Wang et al. [105] described a multispectral method using 420nm and 800nm wave-
bands that divides the image of a face into blocks and creates feature vectors for each
block that are compared to those acquired during enrollment, which has to be done
using the same system. Again, the use of a block-wise approach might lead to smaller
forged facial features staying undetected.

A patent of Zhang et al. [106] describes an anti-spoofing method that can be imple-
mented into mobile devices and is based on the fusion of VIS and NIR images. The
decision if a face is authentic is made by applying a threshold on the number of pixels
within the facial area that have been classified as skin on the basis of normalized
reflectance differences. Unfortunately, a practical implementation and evaluation of
this approach has not been presented so far.
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Besides the described individual shortcomings of these approaches, a robust solu-
tion on matching a reliable spoofing detection to specific facial features has not been
introduced by any of them as well. In this dissertation, two different methods are
presented for this matching procedure; see Chapter 5. As shown in Chapter 7, both
methods achieve very good results.

3.3 Reference Design and Methodology

Considering the design goals formulated in Section 3.1 and the state of the art de-
scribed in Section 3.2, a reference design for a skin detecting camera system with a
focus on face recognition applications is proposed in this section. In Figure 3.2, the
building blocks of the reference design and their relationships are shown. Besides the
camera system hardware, the reference design provides further building blocks for
image processing and image analysis.

SWIR Camera

Active

Multispectral

Illumination

Calibration
Motion 

Compensation

Face Verification

Camera System Hardware 

Image Processing

Image Analysis

Face RecognitionMaterial 

Classification

&

Skin Detection

Figure 3.2: Building blocks of the proposed reference design.
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Due to the advantages of the SWIR spectral range compared to the VIS spectrum for
skin detection and face verification, the reference design is based on a multispectral
SWIR camera system. As SWIR cameras are still very expensive, the design contains
only one single camera. This avoids the need to align the optical path of multiple
cameras or to apply complex image registration methods. Different wavebands are
captured (time-) sequentially using field-sequential waveband capturing (FSWC). In-
stead of passive band pass filters, the design relies on active pulsed LED illumination
in different narrow wavebands. This has several advantages:

• Active, frontal illumination helps to avoid shadows and ensures reliable face
recognition.

• Influences of ambient light can be widely eliminated.

• No mechanical or moving parts are necessary.

• Wavebands can be switched without noticeable delay to keep acquisition times
as short as possible.

Image processing consists of calibration, which comprises the typical intrinsic cam-
era calibration and the calibration of the illumination module, as well as motion
compensation. Motion compensation is necessary to remove artifacts that occur at
the boundaries and edge details of moving objects when they are captured using
FSWC imaging systems. Chapter 4 presents and evaluates different approaches to
address this problem.

Material classification and skin detection are the first and most important compo-
nents of the image analysis block. In order to address face anti-spoofing applications,
the image analysis is complemented by face recognition and face verification modules.
For these applications, it is preferable to enhance existing VIS-based systems using
new modalities rather than building new multimodal SWIR systems from scratch.
This way, already existing face image databases can still be used for face verification.
Different researchers, e.g., Bourlai et al. [4] or Klare and Jain [73], have achieved high
verification rates when using SWIR images to verify faces that have been enrolled us-
ing VIS images with both commercial and scientific state-of-the-art face recognition
software; see Section 2.7.3. Due to these promising results, this reference design pro-
poses to use existing face recognition systems. Chapter 5 describes a novel approach
for reliable skin detection based on spectral signatures and a method to combine skin
detection with face recognition for anti-spoofing.

A specific system setup and practical implementation of this reference design is
described in Chapter 6 and evaluated in Chapter 7.
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Chapter 4

Motion Compensation for
Field-Sequential Imaging Systems

This chapter addresses the problem of motion artifacts, which occur if moving objects
are captured using an imaging system based on field-sequential waveband capturing
(FSWC). It presents approaches to motion compensation for any kind of FSWC-based
imaging with a focus on both real-time capability and accurate compensation of
complex motion scenarios.

Publications: A first approach on motion compensation for an active multispectral SWIR
camera system using interpolation between two successive multispectral image cubes has
been presented in [21]. More generic approaches to motion compensation suitable for any
field-sequential imaging systems are discussed in [24] (in preparation).

4.1 Introduction

As described in Section 3.2.2, all field sequential waveband capturing (FSWC) meth-
ods suffer from motion artifacts if they are used to capture dynamic scenes involving
camera motion and/or moving objects [31]. In color imaging, these artifacts are de-
noted as color breakup effect [35]. Figure 3.1 on page 34 illustrates this effect for a
simple example sequence. In practice, these motion artifacts limit the applicabil-
ity of common FSWC-based multispectral imaging systems. To solve this problem,
this work proposes a frame interpolation method based on motion estimation and
compensation techniques to properly align all edges in every channel image of the
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multispectral image cube. For video sequences that have been acquired using si-
multaneous waveband capturing, optical flow methods have proven to be a very
effective, but computationally expensive approach for frame interpolation [107]: suf-
ficiently high performance for real-time applications can currently only be achieved
by implementations using graphics processing units (GPUs).

A number of very successful and efficient motion estimation techniques have been
proposed in recent years. An overview of these techniques is given in Section 2.5.
However, it was found that even approaches addressing illumination variations can-
not handle FSWC imagery properly; see Section 7.2. To the best of the author’s
knowledge, until now there has not been any research on motion compensation ap-
proaches that are able to handle the specific requirements of FSWC imagery. The
major challenge for such an approach is the assumption of consistent intensities of
corresponding pixels in subsequent images that is made by most motion detection
techniques [36]. This assumption is in general not fulfilled by waveband-sequential
multispectral imagery. Furthermore, there are no appropriate databases for compar-
ing motion estimation and compensation techniques on FSWC imagery.

In Section 4.2, two fundamental concepts to FSWC motion compensation are intro-
duced, i.e. inter-frame interpolation (see Section 4.2.1) and inter-channel matching (see
Section 4.2.2). As inter-channel matching requires a solution to the problem of varying
pixel intensities in the different spectral channels, Section 4.3 describes different ap-
proaches to address this problem. In Section 4.4, a smoothness constraint to enhance
block matching algorithms is introduced, while Section 4.5 describes an adaptation
of the artifact reduction from [91] for multispectral FSWC image sequences.

4.2 General Concepts to FSWC Motion Compensation

Consider a full multispectral image cube Mi, with i ∈N being a sequential number,
consisting of n channels Ci,w, which were acquired using FSWC and at sequential
times ti,w, w = 0, . . . ,n− 1, with w being the waveband. Furthermore, a discrete and
equidistant acquisition time ∆t = ti,w−ti,w−1 is assumed for each channel and a constant
acquisition time T = ti,0−ti−1,0 = n∆t for the full image cube, as illustrated in Figure 4.1.

When optical flow is calculated directly between adjacent waveband images of
the image sequence, i.e. between Ci,w and Ci,w+1, purely intensity-based optical flow
algorithms will produce invalid displacement vectors due to the violation of the
intensity consistency assumption. However, if a preceding multispectral image cube
Mi−1 is taken into account and optical flow is calculated for corresponding waveband
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ti-1,0 ti-1,1 ti-1,2 ti-1,3 ti,0 ti,1 ti,2 ti,3

Mi-1 Mi

Δt
T = n·Δt

Ci-1,0 Ci-1,1 Ci-1,2 Ci-1,3 Ci,0 Ci,1 Ci,2 Ci,3

Figure 4.1: Waveband-sequential image sequence of two successive multispectral
image cubes Mi−1 and Mi with n = 4 channel, with the first channel being the “dark”
reference of an active system. Adapted from [21].

images, i.e. between Ci−1,w and Ci,w, w = 1, . . . ,n−1, the results are much better. This
is demonstrated in Figure 4.2 on the next page.

In conclusion, motion estimation cannot be applied on FSWC image sequences
directly, as illumination conditions and intensity values of object surfaces might differ
strongly between the waveband images. Especially for active camera systems, the
first step in image merging, the subtraction of the (not actively illuminated) “dark”
reference image, might cause problems: properly exposed image areas with much
detail in the actively illuminated waveband images might be completely dark and
without detail in the reference image, as shown in the example in Figure 4.1.

One approach to motion compensation for FSWC image sequences is to avoid vi-
olating the intensity constancy assumption by using two consecutive multispectral
image cubes and estimating motion only between pairs of corresponding channels,
as shown in Figure 4.3 on page 45. Despite the larger displacement between the com-
pared images, state-of-the-art motion estimation techniques will most likely produce
accurate displacement vectors based on this method, as shown in the lower row of
Figure 4.2 on the following page. Assuming a constant and linear motion between
corresponding channels Ci−1,w and Ci,w, every vector F(i−1,w)→(i,w)(x, y) in the displace-
ment map describing the movement of pixel (x, y) between Ci−1,w and its successor
Ci,w can be regarded as a linear combination of n identical partial vectors describing
a pixels movement between Ci,w−1 and Ci,w,

F(i,w−1)→(i,w)(x, y) ≡
1
n

F(i−1,w)→(i,w)(x, y). (4.1)
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Ci,0 (Reference Image) Ci,1 (Waveband 1)

Ci,1 (Waveband 1) Ci+1,1 (Waveband 1)

Optical Flow Ci,0 → Ci,1

Optical Flow Ci,1 → Ci+1,1

Figure 4.2: Effect of violations of the intensity consistency assumption on optical flow
calculation. Optical flow has been calculated between Ci,1 and its reference Ci,0 (upper
row), and between Ci,1 and its successor Ci+1,1 (lower row) using TV-L1 OF. Colored
pixels represent detected motion. Previously presented in [21].

This sort of interpolation between two multispectral image cubes will be called
inter-frame interpolation (IFI). In Section 4.2.1, this approach is described in detail.
Furthermore, modifications to this approach that significantly improve the processing
time by reducing the number of required optical flow calculations while preserving
the compensation accuracy as much as possible are discussed.

As the IFI method assumes constant motion during the acquisition time of both
cubes, changes in motion direction and speed will lead to incorrect displacement
vectors. Therefore, Section 4.2.2 presents a method for the calculation of displacement
vectors from each spectral channel to its closest reference channel, which might be a
dedicated reference or simply the first spectral channel of each frame. This method
will be denoted as inter-channel matching (ICM). It can be applied in two variants:

1. Motion flow can be estimated directly from each individual channel to the
reference. Here, the temporal offset between the compared images and, thus,
the displacement of moving objects will be higher for higher waveband numbers
w. This variant is denoted as channel to reference (C2R) matching and illustrated
in Figure 4.3 on the next page (b).

2. Motion flow can be estimated between each pair of adjacent waveband channels.
Here, the temporal offset is always the same and minimal. Thus, the displace-
ment of moving objects will be minimal as well. In order to compensate motion
for higher wavebands, the calculated displacement vectors between each pair
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tti-1,0 ti-1,1 ti-1,2 ti-1,3 ti,0 ti,1

Mi-1 Mi

Ci-1,0 Ci-1,1 Ci-1,2 Ii+1,0 Ci,1 Ci,2

(b)

(a)

F(i-1,1)→(i-1,0) F(i,1)→(i,0)
F(i-1,1)→(i-1,0) F(i,2)→(i,0)

F(i,1)→(i-1,1) F(i,2)→(i-1,2)

F(i-1,1)→(i-1,0) F(i-1,2)→(i-1,1) F(i,1)→(i,0) F(i,2)→(i,1)(c)

ti,2 ti,3

Ci-1,3 Ci,0 Ci,3

F(i,3)→(i-1,3)

F(i-1,3)→(i,0)

F(i-1,3)→(i,0)

Figure 4.3: Flow calculation for two successive multispectral image cubes using either
(a) inter-frame interpolation (IFI), (b) inter-channel matching (ICM) from each channel
to the reference (C2R), or (c) ICM from channel to channel (C2C).

of channels has to be linearly combined until the reference channel is reached.
This variant is denoted as channel to channel (C2C) matching and illustrated in
Figure 4.3 (c).

Finally, in Section 4.2.3, a combination of IFI and ICM is proposed.

4.2.1 Inter-Frame Interpolation (IFI)

The IFI approach requires two full consecutive multispectral image cubes Mi−1 and
Mi consisting of n spectral channels Ci,w, acquired at times ti,w, with w = 0, . . . ,n− 1
being the waveband. Without violating the intensity consistency assumption for
motion estimation, forwards and backwards displacement vectors can be calculated
for each pair of channels (Ci−1,w, Ci,w), w> 0 using state-of-the-art optical flow or block
matching methods:

forward flow: F(i−1,w)→(i,w), w = 1, . . . ,n−1,

backward flow: F(i,w)→(i−1,w), w = 1, . . . ,n−1.

Here, the reference channel C0 is used as the target, therefore it does not need to
be compensated. As each optical flow calculation is computationally very expensive,
different interpolation methods can be implemented with a focus on either compen-
sation accuracy or processing time. These methods will be described in the following.
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Bidirectional, All Channel Optical Flow (IFI-B)

This method calculates both forwards and backwards optical flow fields for each pair
of channels 〈Ci−1,w, Ci,w〉 with w > 0, as defined above. Then, assuming a constant
linear motion between corresponding channels Ci−1,w and Ci,w, both forward and
backward flow are applied in order to interpolate a motion corrected spectral image
C̃i,w,w = 1, . . . ,n−1, for the reference time ti,0 bidirectionally:

C̃i,w =
(n−w)

n F(i−1,w)→(i,w)[Ci−1,w] ⊕ w
n F(i,w)→(i−1,w)[Ci,w], (4.2)

where F( j,w)→(k,w)[C j,w] indicates the application of the displacement vector field
F( j,w)→(k,w) to channel image C j,w, resulting in all pixel values p(x, y) from C j,w being

shifted according to the two-dimensional displacement vectors ~d(x, y) from F( j,w)→(k,w).
In the final “corrected” spectral images C̃i,w, the positions of moving objects will match
those in the reference channel Ci,0, if the motion estimation has been accurate.

The bidirectional interpolation function ⊕ calculates the intensity of every pixel in
C̃i,w by averaging the corresponding pixel values in Ci−1,w and Ci,w. In conjunction
with the detection of occlusions, this function provides high interpolation accuracy.
The main disadvantage of this approach is its extremely high computational com-
plexity, as it requires 2 ∗ (n−1) optical flow calculations for each multispectral image
cube.

In the following, approaches to reduce the computational complexity of the bidirec-
tional, all channel IFI method (IFI-B) are presented. However, reducing the number
of optical flow computations also reduces the compensation accuracy; see Section 7.2.

Unidirectional, All Channel Optical Flow (IFI-U)

This method simplifies the interpolation by using only one optical flow calculation
for each pair of channels Ci−1,w and Ci,w, w = 1, . . . ,n−1, leading to (n−1) optical flow
calculations for the full image cube. It calculates either the forwards or backwards flow
depending on the current waveband, to keep the length of the resulting displacement
vectors and, thus, the expected error as small as possible:

C̃i,w =


w
n ·F(i,w)→(i−1,w)[Ci,w] if w ≤ n

2

(n−w)
n ·F(i−1,w)→(i,w)[Ci−1,w] if w > n

2

(4.3)
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Unidirectional, Partial Channel Optical Flow (IFI-1 / IFI-2)

The number of required optical flow calculations can be further decreased by in-
terpolating a given flow field to subsequent channels. Assume the backwards flow
F(i,u)→(i−1,u) for waveband u is known and the motion is constant during both cubes
Mi−1 and Mi. Then, the backward flow F(i,v)→(i−1,v) for channel v > u can be interpo-
lated by scaling F(i,u)→(i−1,u) appropriately and applying the result on the original flow
field:

F(i,v)→(i−1,v) =
(
−

v−u
n ·F(i,u)→(i−1,u)

)
[F(i,u)→(i−1,u)]. (4.4)

The motion compensated image C̃i,v is calculated similar to Equation (4.3) on the
preceding page, but only in backwards direction:

C̃i,w =
w
n
·F(i,w)→(i−1,w)[Ci,w]. (4.5)

This way, the number of required optical flow calculations for each frame can be
reduced down to one (IFI-1). However, the more flow fields are interpolated from a
previous one, the higher the approximation error will be if the assumption of constant
motion does not hold true. Neglecting this fact, one calculated flow field could even
be extrapolated over several image cubes, further reducing the processing time at the
cost of an even higher approximation error. In practice and depending on the amount
and nature of expected motion in the scene, it might be a better choice to interpolate
only a limited number of flow fields from others.

To achieve a more accurate interpolation, a second known flow field F(i,w)→(i−1,w) of a
subsequent channel w can be used to interpolate F(i,v)→(i−1,v),u < v <w bidirectionally,
thus requiring two optical flow calculations for each frame (IFI-2):

F(i,v)→(i−1,v) =− v−u
n ·F(i,u)→(i−1,u)[F(i,u)→(i−1,u)] (4.6)

⊕
w−v

n ·F(i,w)→(i−1,w)[F(i,w)→(i−1,w)]

4.2.2 Inter-Channel Matching (ICM)

If the problem of varying pixel intensities between the different spectral channels of
FSWC imagery can be overcome, ICM is a potentially more accurate alternative to IFI,
as it allows to compensate dynamic changes of motion speed and direction during
the acquisition of a multispectral image cube. It can be applied in two different ways:
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Channel to Reference (C2R) Matching

With the C2R method, each channel image Ci,w with w > 0 is matched to its respective
reference channel Ci,0 directly to calculate the backward optical flow F(i,w)→(i,0), which
is used to compensate motion in Ci,w:

C̃i,w = F(i,w)→(i,0)[Ci,w]. (4.7)

This method can be applied to a single multispectral image cube Mi. However,
it is obvious that the compensation accuracy can be increased by using a second
preceding multispectral frame Mi−1 and matching channels of higher wavebands
Ci−1,w, with w > n/2, to the subsequent reference channel Ci,0, as object displacement
will (in general) be smaller between these two images. This approach is illustrated in
Figure 4.3 (b) and leads to the following updated equation:

C̃i,w =

F(i,w)→(i,0)[Ci,w] if w ≤ n
2

F(i−1,w)→(i,0)[Ci−1,w] if w > n
2 .

(4.8)

Channel to Channel (C2C) Matching

In contrast to C2R, C2C matches each channel image Ci,w with w > 0 to it’s direct pre-
decessor Ci,w−1 and calculates the backwards optical flow F(i,w)→(i,w−1). To compensate
motion in Ci,w, all partial flow fields F(i,w)→(i,w−1) are applied to Ci,w sequentially:

C̃i,w = F(i,1)→(i,0)[. . . [F(i,w)→(i,w−1)[Ci,w]]]. (4.9)

Similar to the C2R method, C2C can also be further improved by matching subse-
quent channels Ci,w and Ci,w−1 stepwise either forwards or backwards until the closest
reference channel is reached; see Figure 4.3 on page 45 (c). The compensated image
C̃i,w can then be found by sequentially applying the resulting flow vectors either
forwards or backwards:

C̃i,w =

F(i,1)→(i,0)[. . . [F(i,w)→(i,w−1)[Ci,w]]] if w ≤ n
2

F(i−1,n−1)→(i,0)[. . . [F(i−1,w)→(i−1,w+1)[Ci−1,w]]] if w > n
2

(4.10)

The C2C method keeps the displacement of moving objects as small as possible for
each optical flow calculation. However, for multispectral image cubes with less than
four wavebands the optimized C2R and C2C methods are identical.



4.3. HANDLING INCONSISTENT INTENSITIES 49

4.2.3 Combining ICM and IFI

The inter-frame interpolation and inter-channel matching methods can also be used
in combination. In the first step, an IFI method is applied to calculate the interpolated
displacement vector field

F̃(i,w)→(i,0) =
w
n
·F(i,w)→(i−1,w). (4.11)

Then, F̃ is used as initial flow for an ICM method, which tries to optimize the dis-
placement vectors to account for inconstant motion during the acquisition of both
cubes. For this purpose, a cost factor is introduced which punishes strong deviations
from the initial flow vectors.

4.3 Handling Inconsistent Intensities

There are three principle ways to address the intensity inconsistency problem: reduc-
ing the intensity differences by applying some kind of normalization (Section 4.3.1),
intensity transformation (Section 4.3.2), or by correlation between channels. (Sec-
tion 4.3.3). Figure 4.4 on page 52 and Figure 4.5 on page 53 illustrate their effect on
the channels of an exemplary multispectral image frame.

4.3.1 Intensity Normalization

If pixel intensities are used as data term for the calculation of motion flow, varying
intensities between the spectral channels have to be reduced in order for inter-channel
matching methods to achieve better results than inter-frame interpolation. The fol-
lowing approaches are evaluated in this work:

Global Linear normalization

An average illumination and optimized image contrast is achieved by mapping the
original intensity values f (x, y), having a range of [ fmin, fmax], to new values g(x, y) in
the range [0, gmax], with 0 ≤ fmin and fmax ≤ gmax [32]; see Figure 4.4b on page 52:

g(x, y) =
f (x, y)− fmin

fmax− fmin
gmax (4.12)
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Local Linear Normalization

In order to compensate for non-uniform illumination within the images, local normal-
ization [108] can be applied; see Figure 4.4c on page 52. This approach estimates the
local mean value m f (x, y) and local variance σ f (x, y) within a window around each
pixel f (x, y) by using Gaussian filters and computes the normalized intensity value
g(x, y) as follows:

g(x, y) =
f (x, y)−m f (x, y)

σ f (x, y)
(4.13)

Histogram equalization

To achieve a better compensation for varying brightness of different surfaces in the
scene while emphasizing details, normalization can be extended by a nonlinear op-
eration called histogram equalization, which uniformly distributes the intensity values
over the available range [32]; see Figure 4.4d on page 52. It normalizes the histogram
H(i) of an input image and calculates the cumulative distribution H′(i), which is used
to remap the intensity values:

H′(i) =
∑

0≤ j≤i

H( j) (4.14)

g(x, y) = H′( f (x, y)) (4.15)

Contrast Limited Adaptive Histogram Equalization (CLAHE)

Histogram equalization can also be performed in a local (moving) window indi-
vidually for each pixel. As this operation tends to amplify noise in homogeneous
areas, an enhanced algorithm called contrast limited adaptive histogram equalization
(CLAHE) has been proposed that introduces a clipping limit for histogram redistri-
bution to avoid this issue [109]; see Figure 4.4e on page 52.

4.3.2 Intensity Transformation

Reducing the intensity inconsistency between non-corresponding channels can also be
achieved by converting intensity values into another domain and using the conversion
result as data term for motion estimation. The following approaches are evaluated,
in this respect, in Section 7.2.
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Census Transform

The census transform describes the local spatial structure around a specific pixel of
an image. It has been proposed by Zabih and Woodfill [110] as an approach to the
correspondence problem for stereo depth and optical flow calculation and calculates
a vector of binary values for each pixel px,y depending on its local neighborhood: if
a neighboring pixel has a lower intensity than p, a 1 will be appended to the vector,
otherwise a 0. After the transformation, correspondence is calculated by finding the
minimum Hamming distance between two vectors. Due to the nature of the census
transform, a graphical representation does not make sense here.

Gradients

Gradient images can be created by differentiating the original image, e.g., using a
Sobel filter in both x and y direction. In gradient images, a pixel’s intensity value
depends on the change of brightness in it’s local neighborhood: edges will appear
bright, while constantly colored areas will appear black [46]. If all spectral channels
show similar edges and contours, their resulting gradient images will be similar as
well, independent of their absolute intensity values; see Figure 4.5a on page 53.

4.3.3 Correlation Based Methods

Instead of normalizing or transforming the channel images, correlation-based ap-
proaches can be used to estimate flow fields as well. The following approaches have
been investigated in the context of this work:

Cross-Spectral Feature Detection

Feature detection methods are frequently used in multispectral or multimodal image
registration [111], for example, in the field of remote sensing. This process involves
scaling, shifting or rotating an image to find the best match to another image. While
these methods can not be used to estimate dense motion fields between two images
directly, they might be used for the registration of blocks in block matching algorithms.
To find a match, a sufficient number of distinctive features that are robust to the
differences between the spectral channels must be present within each block.
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(a) Original frame

(b) Global normalization

(c) Local normalization

(d) Global histogram equalization

(e) CLAHE

Figure 4.4: Examples of approaches to handle inconsistent intensities between differ-
ent waveband images by different kinds of normalization.
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(a) Gradients

(b) Scale-invariant feature transform (SIFT)

(c) Speeded up robust features (SURF)

Figure 4.5: Examples of approaches to handle inconsistent intensities between dif-
ferent waveband images by intensity transformation and feature detection. Partially
adapted from [24].

To investigate the potential of cross-spectral feature detection for FSWC motion
compensation, the Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features
(SURF), as well as Maximally Stable Extremal Region Extractor (MSER) and Binary Robust
Invariant Scalable Keypoints (BRISK) have been explored based on implementations
from the openCV library1. Results for SIFT and SURF are shown in Figure 4.5b
and Figure 4.5c. Unfortunately, in almost all of our test examples these approaches
could not robustly detect a sufficient number of distinctive features, or the detected
features varied strongly between the channels. As this leads to a very low motion
field accuracy, this approach was excluded from the evaluation in Section 7.2.

1http://opencv.org/
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Mutual Information (MI)

Mutual information is based on the entropy of an image pair and yields a high
value if the information gain of a new image in addition to an existing image is
low, i.e., if two images of the same scene are geometrically aligned. It is known to
be robust against non-linear intensity relationships and has been proposed for both
multispectral and multimodal image registration applications [111, 112]. It can be
used as a cost function for block matching, but so far it cannot be linearized for the
use in optical flow algorithms.

A block of pixels BM(x1, y1) from image M is matched to a block BN(x2, y2) within
image N by finding the spatial transformation vector ~v = (∆x,∆y) that maximizes the
mutual information between the two blocks MI(a,b). The resulting vector ~v denotes
the optical flow of pixel (x,y), FM→N(x, y):

FM→N(x, y) = argmax
~v=(∆x,∆y)

MI(BM(x, y),BN(x +∆x, y +∆y))

Unfortunately, mutual information is computationally far too intensive to be ap-
plied in real-time. Calculating MI between two macro blocks with a block size
of 15x15 pixels takes about 0.2 ms on the computer used for evaluation; see Sec-
tion 7.2 on page 100. For an image of 640x480 pixels and a (small) search win-
dow of 11x11 pixels (i.e. p = 10), calculation of all displacement vectors takes
t = 0.2ms · 11 · 11 · 640 · 480 = 7434.24s, which is very far from real time performance.
Parallel computation using a GPU, however, is limited due to the amount of inde-
pendent memory needed for the 2D histograms. With an approximate GPU-based
calculation method, a speedup of about 25 times can be achieved [113], so the motion
estimation for one image pair would still require ≈ 300s. Therefore, this approach
was excluded from the evaluation as well.

Normalized Cross-Correlation (NCC)

In digital image processing, cross-correlation is commonly used as cost function in
order to find the position of specific features in an image [46]. NCC additionally
normalizes the image which improves the robustness against illumination changes.
NCC can be used as an inverse cost function for block matching, as well as a linearized
data term in optical flow calculation [54, 114].
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4.4 Extended Cost Function (ECF) for Block Matching

Homogeneous image areas provide very sparse information for motion estimation,
especially when using strongly normalized or gradient images. While state-of-the-art
dense optical flow approaches assume motion to be smooth, block matching is likely
to produce incorrect displacement vectors for these areas. To avoid this, an extended
cost function for block matching based on the sum of absolute differences (SAD,
see [56]) is proposed. The SAD calculates the costs of a block matching operation by
summing up the absolute intensity differences of pixels within block size bs around
the original pixel position (x, y) and the shifted position (x + dx, y + dy). In addition,
the ECF rewards smooth motion by adding the deviation between the displacement
vector ~d(x, y) of pixel (x, y) and those of neighboring pixels ~d(x+k, y+ l) within a close
neighborhood of size ns to the costs, weighted by a factor kn:

SADn(~d(x, y)) =

bs∑
j=0

bs∑
i=0

∣∣∣∣ f (x + i, y + j)

− g(x + i + dx(x, y), y + j + dy(x, y))
∣∣∣∣

+ kn ·

ns∑
l=0

ns∑
k=0

(
|dx(x + k, y + l)−dx(x, y)|+ |dy(x + k, y + l)−dy(x, y)|

)
,

(4.16)

where dx(x, y) and dy(x, y) are the components of vector ~d(x, y). Strong features will
still be matched correctly, as the neighborhood relations have only minor influence in
comparison, while weakly featured regions are stabilized by surrounding features.

4.5 Pixelwise Artifact Correction (PAC)

Based on the approach by Schmidt and Jähne [91], which has been described in
Section 3.2.2 on page 34, a computationally very efficient approach to motion com-
pensation can be deduced on the basis of two main assumptions:

• Pixel intensities in the different channels change only slowly over time, whereas
rapid changes in intensity are assumed to be based on motion events.
• A pixel will be influenced by (at most) one motion event during the acquisition

time of two adjacent frames or image cubes Mi−1 and Mi.
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Thus, given a motion detection threshold δ, a motion event is detected between
channels Ci,w and Ci,w+1, if∣∣∣Ci−1,w−Ci,w

∣∣∣ < δ ∧ ∣∣∣Ci−1,w+1−Ci,w+1
∣∣∣ > δ. (4.17)

If motion is detected between the last channel of frame Mi−1 and the first channel of
frame Mi, i.e., w = n−1, no motion artifacts occur. For w , n−1, motion artifacts are
corrected by simply replacing intensity values for the affected channels Ci,v,w ≤ v < n,
by the intensity values of the previous frame Ci−1,v.

4.6 Summary

This chapter presents and discusses enhancements on existing motion estimation
approaches in order to allow their successful application to field-sequential waveband
captured (FSWC) multispectral imagery of dynamic scenes. The major challenge
for the application of existing methods is the assumption of consistent intensities
for corresponding pixels made by most motion estimation approaches, which is in
general not fulfilled for adjacent wavebands of FSWC imagery.

While inter-frame interpolation (IFI) methods estimate motion fields between cor-
responding channels of successive multispectral cubes to avoid intensity inconsis-
tencies, inter-channel matching (ICM) estimates motion fields between neighboring
channels within a multispectral cube, which requires a successful handling of incon-
sistent intensities between the channels but (potentially) benefits from interpolation
for shorter time intervals and displacement vectors.

For IFI, an optimal bidirectional interpolation approach requires 2 ∗ (n− 1) motion
flow calculations for multispectral images with n wavebands. As motion flow cal-
culations are computationally very expensive, different variants are presented which
reduce the number of required motion flow calculations for each frame significantly
while preserving compensation accuracy as much as possible. With respect to ICM,
different techniques for the handling of intensity inconsistencies based on normaliza-
tion, intensity transformation and correlation are introduced.

In Section 7.2 of Chapter 7, an in-depth evaluation of the described approaches with
focus on both compensation accuracy and real-time capability is presented.
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Chapter 5

Skin Detection and Face Verification

This chapter describes the approach to pixel-level skin detection based on spectral
signature in the short-wavelength infrared (SWIR) spectral range and it’s application
for the detection of spoofing attack or the verification of authentic faces.

Publications: The concept of pixel-wise skin classification and a first evaluation of the classi-
fication performance has been published in [21]. The approaches to the combination of skin
detection and state-of-the-art face recognition systems have been discussed in [22].

5.1 Introduction

The detection of skin in acquired multispectral short-wavelength infrared imagery is
performed by a binary classification method that analyzes the spectral signature of
each pixel and decides whether or not a specific pixel shows human skin. The design
of this classifier is described in Section 5.2 on the next page.

In addition, two further steps are performed in the context of image analysis. First,
a face detection and recognition algorithm searches for faces in the acquired images.
Finally, the locations of detected faces are matched against the results of the skin
classification in order to verify their authenticity. Section 5.3 presents fundamental
approaches to combine the developed skin detection method with state-of-the-art face
recognition systems, including already acquired face databases.
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5.2 Skin Classification Based on Spectral Signatures

The skin classification method presented in this dissertation is an extension of the
work by Schwaneberg [25]. His approach is based on the calculation of quotients
between the absolute remission intensity values of the different wavebands in the
spectral signatures of material surfaces and uses both simple thresholding operations
and machine learning based classifiers. In this work, however, the use of normalized
differences instead of quotients is proposed, as they are more robust to offset changes
and have a well-defined range between −1 and +1, which makes processing easier.

Following the approach by Schwaneberg, the skin classification method proposed in
this work also consists of both a thresholding and a machine learning based classifier.
Here, the two algorithms are applied in a hierarchical manner in order to optimize both
classification accuracy and runtime performance for real-time imaging applications.
The first algorithm performs fast, but rather coarse-grained classification, while the
second algorithm allows for more fine-grained classification. Both algorithms perform
pixel-per-pixel classification using the spectral signatures ~s of the individual pixels:

~s(x, y) = [g1, .., gn−1],

with each element gw,1 ≤w ≤ n−1 being the grayscale value of pixel (x, y) in spectral
channel Ci,w of the multispectral image cube Mi, which consists of n channels. As
w = 0 is the reference channel, it is not contained in the spectral signature.

5.2.1 Thresholding on Multidimensional Normalized Differences

For each pixel (x, y), the thresholding algorithm calculates normalized differences
d(ga, gb) for all possible combinations of grayscale values gw within ~s(x, y):

d(ga, gb) =

(
ga− gb

ga + gb

)
with 1 ≤ a < n− 1 and a < b < n. For n = 5, for example, this results in a vector of
normalized differences ~d with

~d(x, y) = [d(g1, g2),d(g1, g3),d(g1, g4),d(g2, g3),d(g2, g4),d(g3, g4)]

for each pixel (x, y). The normalized differences range from −1 ≤ d(ga, gb) ≤ +1. In
contrast to the values of the spectral signatures, they are independent of the absolute
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brightness of the analyzed pixel (x, y), which differs not only with the remission
properties of the surface material, but also with the measurement distance and angle
of incidence. Thus, the vector of normalized differences allows for a robust and fast
classification of materials into “skin” and “non-skin” by specifying upper and lower
thresholds for each vector component, leading to a multidimensional bounding box.
Only instances that are mapped to a point within this box are classified as “skin”.
Depending on the training method, this box can be designed either more accepting
(i.e. by choosing thresholds that include all positive training samples with a large
margin) or more rejecting (i.e. by using smaller margins).

However, this “difference filter” algorithm is not capable of distinguishing actual
human skin from materials that are very similar to skin, such as some kinds of silicon
that are used for the creation of masks. Due to the simplicity of the mapping method,
such samples might be mapped to points very close to authentic skin samples, mak-
ing it impossible to achieve a linear separation of all “skin” and “non-skin” samples.
Therefore, for biometric anti-spoofing applications that require a very accurate clas-
sification with a low false negative rate (FNR) and are likely to be attacked with such
skin-like material, this difference filter alone is not sufficiently reliable.

To solve this problem, the difference filter is only used in conjunction with a second
algorithm. Thus, it is designed to be very accepting by specifying the thresholds in
a way that includes all real skin samples as well as skin-like materials. Then, a com-
putationally more expensive fine-grained classification algorithm based on machine
learning techniques is applied on this set of “skin or skin-like” spectral signatures.

5.2.2 Classification with Machine Learning Techniques

For the implementation of a fine-grained machine learning based classifier, three
different techniques are evaluated in the context of this work: binary decision trees,
random forests and support vector machines (SVMs). The basics of these techniques
are described in Section 2.6 on page 20.

All classifiers are trained using normalized difference vectors ~d, which are calcu-
lated based on spectral signatures of skin, skin-like materials and other materials, as
described in Section 5.2.1 on the preceding page. In order to find a robust and accurate
classifier, the training data must cover a sufficiently high amount of samples from
all relevant material surfaces in varying distances and observation angles to avoid
overfitting. Therefore, a large variety of multispectral SWIR images is required to
extract the necessary training data from. In the context of this work, training images
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Figure 5.1: Generation of training data for machine-learning-based classifiers from a
face with applied partial masks. Spectral signatures from areas highlighted in green
are extracted as positive, signatures from areas highlighted in red as negative samples.

are acquired with the active camera system that is presented in Chapter 6. Using
a specifically developed software tool, only unquestionable “skin” and “non-skin”
areas in these images have been manually segmented to extract the annotated spectral
signatures of the respective pixels; see Figure 5.1. Details about the classification per-
formance will be given in Chapter 7. In general, all machine learning based classifiers
perform significantly better than the difference filters alone, but have a much higher
computational complexity.

Limiting the fine-grained classification to those samples that have been positively
classified by the difference filter reduces the overall run time of the skin detection
module noticeably in typical use cases. In addition, outliers and “unknown” material
samples (samples that were not included in the training data) are less likely to create
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false positives when using two different classifiers. The result of the classification
process is stored in the form of a binary image with

p(x, y) =

1 if ~s(x, y) ∈ Sskin

0 else,
(5.1)

where Sskin is the set of spectral signatures ~s that are classified as skin.

5.3 Combining Skin Detection and Face Verification

Classical biometric face recognition is limited in spoof detection, as solely imagery
in the visual (VIS) spectrum is used. Methods using alternative modalities are more
successful in the authentication of skin and faces as such, but often require to set up
new databases for face recognition. The approach presented in this work, therefore,
aims at a scheme integrating multispectral SWIR skin authentication into existing face
verification systems. Here, it is expected that the face recognition system’s database
has been created using images captured in the VIS spectrum. As it will be shown
in Chapter 7, this approach achieves unprecedented anti-spoofing performance in
cooperative user scenarios even in the presence of partial disguises or facial hair.

As described in Section 5.2, multispectral SWIR imaging allows for a reliable clas-
sification of material as “skin” or “non-skin” at pixel level. Even material similar to
skin, such as silicon that has been specifically designed to model human limbs, can be
distinguished from authentic human skin with high accuracy. However, using these
classification results for face verification is still a challenging problem, as facial areas
showing skin naturally vary strongly across different individuals, while at the same
time, spoofs may also address very different regions and amounts of a person’s face;
see Figure 5.2 on the next page.

As it is not feasible to individually re-engineer any potentially given face recog-
nition system in order to analyze its “facial regions of interest” and to apply skin
verification there, this work proposes two fundamentally different methods to inte-
grate SWIR-based skin detection into existing face recognition systems that are widely
independent of the actual recognition algorithm:

(A) Masking Out Non-Skin Pixels: For this method, only SWIR images have to be
acquired. Thus, it requires the given face recognition system to be able to handle
SWIR images as input for face recognition. Here, skin classification is applied on
the SWIR images and non-skin regions are masked out prior to face recognition
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Figure 5.2: Portraits of persons showing different amounts of skin in the facial re-
gion (upper row) compared to a face with different partial disguises (lower row).
Previously presented in [22].
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Figure 5.3: Components of the proposed anti-spoofing methods: (A) masking out of
non-skin regions; (B) region of interest (ROI) matching. Previously presented in [22].



5.3. COMBINING SKIN DETECTION AND FACE VERIFICATION 63

in a preprocessing step. This ensures that no (possibly forged) non-skin areas
are used for the recognition process.

(B) Generic regions of interest (ROIs): This method can be applied to any given face
recognition system. In addition to the SWIR image required for anti-spoofing,
a VIS image of the face can optionally be acquired and used for face recognition
instead of the SWIR image. The two cameras do not need to be co-registered as
long as they have a similar field of view and a negligible baseline shift to ensure
that both cameras capture the same face. Here, skin classification is applied on
the SWIR image and anti-spoofing is performed based on a generic region of
interest in a postprocessing step.

Both of these methods can be applied if subjects have been enrolled using either
typical VIS images or appropriate SWIR images similar to those that are used for
query. They consist of the following components; see Figure 5.3 on the facing page:

A multispectral SWIR image source with at least three well-chosen wavebands in
the range of approximately 900 nm to 1600 nm. Additional wavebands can be
used to further increase the reliability and accuracy of the skin classification
method. For the concept validation presented in Section 7.5, the camera system
described in Chapter 6 with four wavebands around 935 nm, 1050 nm, 1300 nm
and 1550 nm is used, but the proposed approach can be applied to other image
sources as well.

A face recognition and verification module that is considered as a black box and is
potentially implemented as academic state-of-the-art or commercial off the shelf
software. For both face detection and recognition, a waveband around 1050 nm
was found to be suited best, as the remission intensity of skin is comparably
high in this waveband, with eyes and mouth appearing darker. Especially if
subjects have been enrolled using VIS images, this waveband has advantages
over higher wavebands when being compared to the reference image.

An accurate machine learning-based skin classifier trained on authentic skin sam-
ples, as well as a variety of relevant material samples, which include different
types of makeup and materials that might be used for spoofing attacks.

An innovative anti-spoofing module that detects spoofing attacks reliably without
rejecting authentic faces due to facial hair or uncritical occlusion of skin. This
module has two modes of operation (see above): masking out non-skin regions
as a preprocessing step to face recognition systems that can work on SWIR
imagery as input, or region of interest matching as postprocessing of the FR systems
verification result.
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Figure 5.4: SWIR image before (left) and after (right) masking out all non-skin pixels.
Previously presented in [22].

5.3.1 Masking Out Non-Skin Pixels

This first method, (A), see Fig. 5.3, to integrate SWIR-based skin detection into existing
face recognition systems removes, or masks out, all pixels that have been classified
as “non-skin” in the input images as a preprocessing step before the SWIR image
is analyzed by the face recognition algorithm. If the subjects have been enrolled
using VIS images, this method requires that the face recognition module is capable of
matching these images with the SWIR face images acquired for the query.

The basic principle of the masking method is comparable to the approach described
by Dhamecha et al. [104], which has been described in Section 3.2.3 on page 36.
However, the method proposed here is much more fine-grained, as the decision
whether or not to use a certain facial area for the face recognition is made for each pixel
individually instead of larger patches. This ensures that no forged information will
be contained in the image used for face recognition, while all authentic information
is maintained. Fig. 5.4 shows a face image before and after masking.

5.3.2 Generic Regions of Interest (ROIs)

The alternative approach, (B), to masking non-skin regions verifies the authenticity of
a face in a postprocessing step using a generic region of interest (ROI). This method
does not impose specific constraints on the face recognition module as such. Espe-
cially, the face recognition system can be fed with either SWIR or VIS query images,
whatever the system requires.
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Figure 5.5: Example of an attack that overcomes a simple spoofing detection based
on the total amount of skin in the facial area.

As shown in Fig. 5.3, the anti-spoofing module uses the SWIR face image to check
the authenticity of a face presented to the system. In postprocessing, this information
is combined with the result of the face recognition module. If a face has been verified
by both the face recognition (i.e., the captured face image matches the claimed identity)
and the anti-spoofing module (i.e., the captured face is authentic), it is accepted by
the system.

Template Design

A simple approach to detect a spoofing attack based on the SWIR image would be to
measure the total amount of skin in the complete image or facial region. However, this
approach is too simple to distinguish actual spoofing attacks with partial disguises
from partial occlusions by facial hair, for example, as shown in Figure 5.2 on page 62.
Furthermore, this approach potentially opens up new possibilities to attack the face
recognition system: an attacker could cover a presented mask partially using his
hands, for instance, to generate a sufficiently high amount of authentic skin in the
facial area; see Figure 5.5.

Therefore, this work proposes a different approach that restricts the skin verification
to regions in the human face that are commonly not occluded by, e.g., facial hair: the
central area around the nose and eyes, as well as the mouth. Biometric face verification
systems are usually robust against changing hair styles or beards, which leads to the
hypothesis that these regions are most significant to be checked for skin authenticity.
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Based on this hypothesis, a generic template of the central facial area has been
deduced, which includes only those areas that can be expected to show uncovered
skin for every subject. The template is shown in Figure 5.6a on the facing page. The
template’s shape and dimension has been experimentally optimized using a database
of face images, which includes several persons wearing a full beard; see Section 7.5.1.

Template Matching

In order to match the template to a captured image, a feature-based cascade classifier
from the openCV library is used to detect faces in the first step. In the second step,
the facial landmark detector presented by Uricar et al. [115] is applied on the locations
of detected faces to locate facial features. Using a previously trained model, this
approach is capable of detecting a set of 20 landmarks, as shown in Figure 5.6b
on the next page. The algorithm is robust against (moderate) rotation and changes
in perspective and allows to estimate the orientation and pose of a face with high
accuracy and real-time capable processing times in the order of milliseconds [115].

After extracting the facial features, three relevant orientation points are derived
from them. The center positions of both eyes are found by averaging features 6 and 7,
as well as 9 and 10, respectively, while the center position of the mouth is calculated
as the center of features 16, 17, 18 and 19. These three points have shown to be
most stable under motion and changing illumination conditions, as variations in the
locations of single features can be compensated to a certain extent. Based on these
points, an affine 2D transformation matrix is calculated and applied on the template.
Then, its width is adjusted to the width of the face, which is estimated from features
11 and 15. In addition, the features marking the outer edges of the mouth are used
to calculate form and position of the lips and the outlined area is added as a second
template.

Finally, the amount of authentic skin pixels is calculated for both ROIs. As the
template matching process suffers from slight inaccuracies of the landmarking algo-
rithm, the matching is not always perfect. Therefore, the threshold for the verification
must be set to a level that tolerates these inaccuracies while being sensitive enough
to reject any spoofing attacks. Similarly to the template design, the optimal threshold
has been found experimentally based on a database of face images from more than
150 persons; see Section 7.5.1. It has been set to 90% of the pixels in the central face
area and to 50% of the pixels in the mouth area. This setting works for all faces in the
database and is expected to be sensitive enough to detect spoofing attacks. Figure 5.7
on the facing page shows an example of the successful template matching.
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(a) Template of the central face area. (b) Example of a facial landmarking result.

Figure 5.6: Components of the ROI matching method. Previously presented in [22].

(a) Face without mask (b) Face with partial mask

Figure 5.7: Results of the ROI matching method (B). Green: successful verification;
red: spoof detected. Previously presented in [22].
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5.4 Summary

In this chapter, a pixel-level skin detection approach and its application for the task
of face verification and anti-spoofing are presented and described. The two-stage
skin classification method is based on the analysis of spectral signatures in the SWIR
spectral range, which is ideally suited to distinguish human skin from other materials
as described in Section 2.2. The spectral signatures ~s(x, y) of each individual pixel are
extracted and normalized differences ~d(x, y), which are independent from absolute
pixel intensities, are calculated using all combinations of components in ~s(x, y).

In the first stage, a coarse-grained “difference filter” classifier applies upper and
lower thresholds on ~d(x, y) and creates a binary output matrix, classifying each pixel
as either “skin-like” or “non-skin”. The thresholds are defined to include all skin
samples from a training dataset. In the second stage, the remaining positive samples
are fed into a more fine-grained classifier that is based on machine learning techniques
and has been trained with a large amount of both positive and negative samples. This
two-stage approach ensures high classification accuracy with minimal computational
costs.

In order to combine the per-pixel skin classification with face recognition, an anti-
spoofing method with two modes of operation is proposed that enhances existing face
recognition solutions and ensures the authenticity of a face, while rejecting both two-
and three-dimensional facial masks and (partial) disguises. The two modes are (A)
the masking of non-skin pixels as preprocessing step to face recognition systems that
can handle SWIR imagery as input and (B) verification of a generic region of interest
as postprocessing step after a successful recognition, which can be performed either
on SWIR or visual (VIS) spectrum images from a (probably already existing) second
camera. For method (B), a suited ROI template has been designed based on a dataset
of face images. It covers the central facial area, which is typically free of facial hair, as
well as the mouth area. By using a facial landmark detector, the template is matched
to a subject’s face and the areas covered by the template are checked for authenticity
using a threshold of positively classified pixels.

A detailed evaluation of the proposed methods is presented in Chapter 7.
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Chapter 6

System Design

In this chapter, a specific system design for a skin detecting camera system called
SkinCam is presented that implements the reference design proposed in Chapter 3.
Besides an overview of the setup, implementation details of hard- and software and
an analysis of eye safety for the active illumination module are given. Finally, an
approach to estimate depth information from axial chromatic aberrations is described.

Publications: An earlier development stage of this system design with a focus on face verifica-
tion has been presented in [21]. Here, the system design has been enhanced and is described in
greater detail, including variations and possible modifications. Estimating depth from defocus
introduced by chromatic aberration has already been covered in work by Velte [116].

6.1 Camera System Setup

This section introduces a system setup for an active multispectral short-wavelength
infrared (SWIR) camera system for skin detection which will be denoted as SkinCam.
This setup is composed of three major building blocks which are illustrated in Fig-
ure 6.1 on the next page. These blocks have been derived from the reference design
proposed in Section 3.3 on page 39. They will be explained in sequential order in the
following sections: Section 6.2 on page 71 describes the implementation and design
decisions for the camera system with a focus on the hardware and the software archi-
tecture. Section 6.3 on page 82 presents the implemented image processing methods,
while Section 6.4 on page 86 focusses on the application level software.
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Figure 6.1: Building blocks of the proposed implementation. Prev. shown in [21].

Based on the design goals specified in Section 3.3, this work proposes a system setup
consisting of a single SWIR camera that is sensitive to a spectral range of 900 nm to
1700 nm with an attached illumination module that illuminates the camera’s field of
view in up to four distinct narrow wavebands within this spectral range (one at a
time), as illustrated in Figure 6.2 on the facing page. For the implementation of the
illumination module, the use of light emitting diodes (LEDs) is an obvious choice,
as they produce rather narrow band illumination without the need for additional
band pass filters and can be pulsed with high intensities and variable frequencies. A
microcontroller system, which is embedded into the ring light module, triggers short
pulses in alternating wavebands and signals the camera to start and stop the exposure
of a new image synchronized to the light pulse. The camera transmits the acquired
images to a connected computer via Gigabit Ethernet, which in turn is connected to
the microcontroller system via USB in order to configure and start the acquisition.
In addition, a special software tool has been developed that allows a user to control
the image acquisition and to perform all related image processing and analysis tasks
with a graphical user interface.

In practice, the illumination module is working as a pulsed light source. The
microcontroller system enables its different wavebands one after the other in a fixed
order and simultaneously triggers the camera exposure. To remove the influence of
ambient light, in each acquisition cycle an additional camera exposure is triggered
without the LEDs flashing. This “dark” reference image is subtracted from each of the
waveband images or channels, respectively, in preprocessing, so that only light emitted
by the illumination module in one single waveband remains. Each set of waveband
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Figure 6.2: Schematic of the camera system setup. Previously presented in [21].

images and its corresponding reference image are combined in a multispectral image
cube. This method works well for ambient light originating from continuous light
sources, such as daylight. Here, all light sources with intensity variations that are
either very slow or very fast compared to one full acquisition cycle can be regarded
as continuous. However, “flickering” or pulsed light sources, which change their
intensity with frequencies similar (but not identical) to the acquisition frequency,
might cause distortions of the spectral signatures. In practice, most flickering light
sources are incandescent or fluorescent electric lamps, flickering at twice the local
power line frequency of 50 Hz or 60 Hz, therefore having periods of 10 ms or 8.3 ms,
respectively. By using an exposure time that matches this period or any multiples of
it, the flickering can easily be reduced to a negligible level.

6.2 Implementation Details

6.2.1 SWIR Camera

At the time of writing, most commercially available cameras for the SWIR spectrum
are based on indium-gallium-arsenide (InGaAs) detectors. As described in Section 2.3
on page 15, InGaAs is a very efficient semiconductor detector material and has a high
responsivity up to wavelengths of 1.7µm. Current InGaAs focal plane arrays have a
spatial resolution of up to 640x512 pixels and can be read out with very high frame
rates, if necessary.
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(a) Goldeye P-032 (b) Goldeye G-032

Figure 6.3: SWIR cameras used in this work (not the same scale).

In the context of this work, two Goldeye1 cameras are used, which integrate identical
FPAs and provide industrial standard GigE network and external trigger interfaces
with optical isolators. In both cameras, the FPAs are cooled to an operating tempera-
ture of using a thermoelectric cooling system based on the Peltier effect. The cameras
are shown in Figure 6.3. The older Goldeye P-032 achieves a frame rate of 30 frames
per second (FPS), while the newer Goldeye G-032 reaches up to 100 FPS and features
a much smaller casing and redesigned cooling system. The most important technical
specifications are listed in Appendix A, Table A.1 on page 139. For comparison, tech-
nical data of the fastest camera that is currently available on the market, the Xenics
Cheetah 640 CL, is given as well. The Cheetah allows to capture images at a frame rate
of 1730 FPS using multiple CameraLink interfaces. For an active camera system with
frame rates in this order, motion compensation would not be necessary for application
scenarios that involve nothing faster than human movements. Unfortunately, due to
its significantly higher price, it could not be used for this work. With respect to the
sensitivity of the detector array, all cameras are very similar: the Goldeyes have larger
detector cells with 25µm x 25µm compared to the Cheetah’s 20µm x 20µm, which
compensates for their slightly lower quantum efficiency of approx. 73% compared to
80% peak efficiency.

In addition to the camera itself, a suited lens is necessary as well. Many lenses for
imaging systems are made of materials and with applied coatings that are optimized
for wavelengths in the visual spectral range [45], for example in order to remove
unwanted reflections. This might lead to unforeseen absorption bands in the captured
SWIR spectra or increased aberrations; see Section 2.4 on page 17. To address this

1Allied Vision Technologies GmbH, Stadtroda, Germany (http://www.alliedvision.com)
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issue, some manufacturers offer lenses that are optimized especially for the SWIR
spectral range. For the SkinCam system proposed in this dissertation, lenses from
EHD Imaging1 are used. Although these lenses are designed for an image format
of one inch, i.e., a diagonal of 16 mm [117], while the Goldeye cameras have a larger
image format of approx. 20.5 mm in diagonal, they illuminate the full sensor area
with only marginal vignetting at the outer edges. The required focal length for the
lenses depends on the particular application.

A suited focal length for face recognition applications can be calculated using the
lens Equation (6.1) [117]. By specifying the desired image size I as the full height
of the FPA, the object size O as the average height of a human head according to
industrial standard DIN-33402-2 [118] and the desired minimum distance between
lens and object dO, the equation yields the optimal focal length f .

f =
dO · I
O + I

. (6.1)

With an object distance of dO ≥ 1m, a head height of approx. O = 0.235m and the
height of the FPA I = 12.7mm, an optimal focal length of fopt ≈ 51.3mm is calculated.
Therefore, the EHD50HC-SWIR lens with f = 50mm has been selected for the face
recognition application scenario, which produces an angle of view of α ≈ 18◦ along
the (wider) x-axis when used with the Goldeye cameras.

6.2.2 Microcontroller System

The microcontroller system is embedded into the illumination module and triggers
LED pulses and the connected camera simultaneously. The cameras are configured
to start the exposure immediately when the trigger input changes to high level and to
keep exposing until it returns to low level. To avoid a negative influence of flickering
or pulsed light sources in the vicinity of the camera system, an exposure time of 10 ms
is used within areas with a local power line frequency of 50 Hz and an exposure time
of 8.3 ms within areas using 60 Hz, respectively. As the used Goldeye cameras have a
very short readout time, the G-032 can be operated at its maximum frame rate of 100
FPS and still maintain an exposure time close enough to 10ms to remove the flickering
effect of electric lamps. Figure 6.4 on the following page illustrates the chronological
order of the signals given by the microcontroller system within one full acquisition
cycle of 50 ms, resulting in an effective multispectral frame rate of 20 FPS when using
four distinct wavebands plus reference channel.

1EHD imaging GmbH, Damme, Germany (http://www.ehd.de/)
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Figure 6.4: Timing diagram of the signals given by the microcontroller system.
Previously presented in [21].

The control system is implemented using an Atmel ATmega 168 8-bit controller.
An FTDI serial interface to USB converter chip is used to connect the controller with
a desktop computer. Both the FTDI and the controller are powered with 5 V supply
voltage via USB. Schematics of the circuit design and the layout of the printed circuit
board can be found in appendix A.

Figure 6.5 on the next page illustrates the standard program flow of the control
system. In a first step, timers and interface ports are initialized and interrupts are
configured. One timer is configured according to the specified frame rate and, on
overflow, triggers an interrupt service routine (ISR) that sets a flag indicating the start
of a new light pulse and exposure phase. A second timer is configured to match
the specified integration / exposure time and triggers an ISR that sets a stop flag on
overflow. Similarly, if data is received on the serial interface, i.e., from the connected
computer, a notification flag will be set by another ISR.

Afterwards, the program performs an endless loop that checks if any of the flags
is set and reacts to it appropriately. If a command was received, the command and
optional parameters are read and interpreted. The possible commands are start or
stop of the first timer (and, thus, the image acquisition procedure), the change of the
frame rate or exposure time, as well as the waveband configuration. If the start flag is
set, the next waveband in line is selected, the respective LEDs are turned on and the
exposure is started by setting a high level to the camera’s trigger input. If the stop flag
is set, the LEDs of the current waveband are turned off, the exposure is stopped by
setting the camera’s trigger input back to low level and finally, the current waveband
number is transmitted to the connected computer for synchronization.
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Figure 6.5: Program flow of the microcontroller system.

6.2.3 Waveband Selection

In previous work [20, 25, 82], a large amount of human skin and material samples
have been analyzed using both a visual (VIS) and a SWIR spectrometer. The captured
spectra have been stored in a spectral remission database. In the context of this
dissertation, remission spectra of additional skin and material samples, including a
selection of facial disguises and masks, have been acquired and added to this database.

To evaluate the acquired data and to find a small set of wavebands that can be used
successfully for material classification, the data mining software AnaSpec, initially
developed by Schwaneberg et al. [82], has been applied on the extended remission
database. It performs a brute force search over all possible combinations of a given
number of wavebands and calculates the resulting normalized differences (see Sec-
tion 5.2.1 on page 58) in order to find the set of wavebands that separates skin and
other materials best. For this purpose, AnaSpec simulates the typical emission spectra
of LEDs with the respective peak wavelengths λp and takes their expected full width
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at half-maximum (FWHM) into account. This is done by performing a convolution
of a specific sample’s remission spectrum with the LED’s emission spectrum, which
is simulated based on a database of several reference LED types.

In practice, the total number of LEDs used on the illumination module is limited, as
costs, power supply and space need to be considered. Therefore, a compromise has
to be made between the number of wavebands and the achievable radiated output
power per waveband. For face verification, the demand for classification accuracy
is higher than the demand for high operating distances. In addition, the selection of
wavebands has to be restricted to those of LED chips that are actually available on
the market.

In his work, Schwaneberg [25] selected a combination of four LEDs with wavebands
of λ1 = 830 nm, λ2 = 1060 nm, λ3 = 1300 nm and λ4 = 1550 nm. Here, a set of four
wavebands was also found to be very promising, as this still allows for a sufficient
number of LEDs per waveband in order to achieve an acceptable operation range in
indoor scenarios. Taking the newly acquired material samples used to create facial
disguises and masks, as well as the sensitivity curve of the camera’s InGaAs detector
into account, a good separation of skin and material samples can be achieved by
choosing λ1 = 935 nm for the first waveband and keeping the other wavebands as
proposed by Schwaneberg.

6.2.4 Design of the Illumination Module

Within the scope of this dissertation, two illumination modules have been imple-
mented that are both focused on the face recognition application scenario. Regardless
of the application at hand, a uniform distribution of the LEDs around the camera
lens, as well as similar viewing angles and radiant patterns of the different LED types
are very important in order to achieve a homogeneous illumination of the scene.
Otherwise, the extracted spectral signatures of an object would differ depending on
the object’s position in relation to the illumination module. To avoid this problem as
much as possible, LEDs of the same model and manufacturer have been selected. In
addition, optical simulations have been performed to find the optimal distribution
for the different numbers of LEDs per waveband.
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Selection of LEDs

The first evaluation model that was created in the context of this work has already
been described in [21] and is targeted on face recognition applications. It consists of
90 LEDs in standard 5mm packages with plastic lenses in four distinct wavebands:
λ1 = 935 nm, λ2 = 1060 nm, λ3 = 1300 nm and λ4 = 1550 nm. The number of LEDs for
each waveband was chosen with regard to both the expected radiated power of each
waveband and a uniform distribution of the LEDs on the module.

The first waveband was designed with a much higher power output of
∑

Φe(λ1) =

300mW (at a forward current of IF = 100mA) compared to the other channels with
only 150 mW to 170 mW to compensate for the lower responsivity of the camera’s
InGaAs detector array in this spectral range. Nevertheless, it was found that the
camera’s responsivity in this waveband is even lower than expected and as a result,
the noise level within the captured images is strongly increased. During practical use
of the camera system, additional room for improvement has been recognized and a
new revision of the illumination module has been developed.

In the second revision, the waveband at 935 nm was exchanged for a new waveband
around 1200 nm. According to the spectrometer data described in Section 6.2.3, the
resulting combination is similarly well suited for face anti-spoofing and was found to
be much more reliable in practice. In this revision, the illumination module contained
200 LEDs in a larger radius to improve both remission intensity and homogeneity of
the illumination. The total radiated power per waveband was increased to values
between 264 mW to 340 mW at a forward current of IF = 100mA, which allows for
continuous operation. Due to the pulsed operation of the module during multispectral
image acquisition, the forward current can be doubled in practice, which increases
the radiated power output to an unknown extent. For both illumination modules,
specifications of the used LEDs can be found in Appendix A, Table A.2 on page 140.

Simulation of Designs and Placement Patterns

To find a suited placement pattern for the LEDs, the different LED types have been
modeled as light sources using the optical simulation software FRED Optimum de-
veloped by Photon Engineering, LLC. Their typical peak wavelengths, spectral and
radiant power distributions have been specified according to their datasheets. FRED
performs ray tracing to simulate the propagation of light from each light source to
a virtual target plane. It also provides a scripting language and batch processing
capabilities to run a series of simulations with different parameters. This way, dif-
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ferent placement patterns and varying positions for the LEDs can be compared by
simulating the resulting intensity distribution for each waveband on a target plane.
Ideally, the normalized intensity distributions of all wavebands should be identical,
leading to a homogeneous “color” on the target. In addition, the overall illumination
intensity should also be distributed as homogeneously as possible over the full plane
in order to make the best of the camera’s dynamic range. In contrast to this, an
intensity peak in the center of the plane and strong light falloff to the outer edges, for
example, reduces the dynamic range that is still available to detect actual differences
in remission intensities of different material surfaces. Besides these two functional
constraints, there is also a third, non-functional constraint: for easier handling and
practical reasons, a smaller size of the illumination module is favorable.

With these requirements in mind, several designs and placement patterns have
been simulated. Besides circular designs, which are advantageous with respect to
size, rectangular designs have been created as well. For all simulations, the virtual
target plane was adapted to the field of view of the camera with a f = 50mm lens
attached to it, i.e., at an angle of view of α̂x ≈ 18.2◦ along the x-axis and α̂y ≈ 14.6◦

along the y-axis. Simulated light rays reaching the target plane are captured using
an array of 41x33 simulated detectors. The different LED types in the four SWIR
wavebands are visualized in yellow, red, green and blue. Please note that the col-
oring of the homogeneity plot does not correspond to the colors of the individual
wavebands directly: here, the four colors are reduced to three (RGB) colors in order
to illustrate their mixing ratio. For this purpose, the RGB channels are calculated as
follows: R = 0.5 · (λ1 +λ4), G = 0.5 · (λ2 +λ3) and B = 0.25 · (λ1 +λ2 +λ3 +λ4). This way,
any inhomogeneities would be noticeable by local changes in the color tones, while
constant ratios between the four wavebands are shown as gray tones.

Figure 6.6 on the facing page illustrates the three most interesting designs for the
first revision of the illumination module with a total of 90 LEDs and shows the results
for spectral homogeneity and illumination distribution over the target plane. In all
designs, the wider viewing angle of the 1300 nm LEDs leads to a slight inhomogeneity
of the spectral mixture that increases towards the edges of the plane. In addition, the
lower number of 935 nm LEDs introduces an inconsistent intensity distribution of
this waveband compared to the others. Using a rectangular design with groups of
LEDs, this can be compensated well at the cost of a slightly worse mixture of the other
channels. With respect to the size requirements, the design based on three small rings
has been chosen for the implementation of the first revision. The final implementation
of this ring light is shown in Figure 6.8a on page 81.
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Figure 6.6: Designs and LED patterns for the first revision of the illumination module
(left), resulting spectral homogeneity (middle) and distribution (right) projected on a
virtual analysis (target) plane covering the cameras field of view.
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Figure 6.7: Designs and LED patterns for the second revision of the illumination mod-
ule (left), resulting spectral homogeneity (middle) and distribution (right) projected
on a virtual analysis (target) plane covering the cameras field of view.
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As the second revision of the illumination module uses 200 LEDs in total, an increase
of the size was inevitable for its implementation. Figure 6.7 on the facing page
shows three designs for the second revision and their simulation results. The higher
and more similar number of LEDs for each waveband allows for a more consistent
distribution, which is clearly shown in the spectral homogeneity and spatial intensity
distribution of the two circular designs. Compared to them and in contrast to the
first revision, the use of a rectangular design produces significantly worse simulation
results. As the bigger circular design does not show significant improvements over
the smaller one, the latter one was chosen for the final implementation and is shown
in Figure 6.8b.

Figure 6.8 presents the final implementations of both ring light revisions attached to
the camera in frontal view. Implementation details and schematics of the full circuit
design and the board layout for both revisions can be found in appendix A.

(a) Ring light rev. 1. Width: 0.11 m. (b) Ring light rev. 2. Width: 0.19 m.

Figure 6.8: Comparison of the different illumination modules (scale varies).

6.2.5 PC-based Control and Analysis Software

The Goldeye cameras transmit each captured frame via gigabit ethernet to a connected
computer, which is also connected to the microcontroller system embedded in the
illumination module via USB. To control the camera systems operation, retrieve the
captured images and perform the required image processing and analysis tasks illus-
trated in Figure 6.1 on page 70, a special software tool has been developed using C++
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and the Qt framework1. In the following, the fundamental architecture of the soft-
ware will be described, while Section 6.3 and Section 6.4 will present the implemented
methods. For more information about the software itself, please refer to Appendix
B, which includes details about the used libraries as well as UML class and sequence
diagrams.

The SkinCam software is composed of several widely independent modules, which
run in separate threads and communicate using the signal and slot architecture pro-
vided by Qt. Below the main program thread, which also runs the graphical user
interface module, there are independent modules and threads for image acquisition,
image (pre-) processing, as well as image analysis. Due to this division, the software is
optimally suited for a computer with four logical processors. In order to use real time
motion compensation as described in Chapter 4, a compatible graphics processing
unit (GPU) is required.

The architecture has been designed with a focus on easy exchangeability of single
modules and classes. For this purpose, interface classes have been specified which
separate the basic functionality from actual implementations and specific hardware.
The use of a different camera, for example, would only require to implement a new
class that matches the specific camera’s programming interface to the functions spec-
ified in the abstract camera interface class. Motion compensation or skin detection
algorithms could be exchanged in the same way.

6.3 Image Processing

In the first step of image processing, each image that was captured by the SWIR
camera is annotated with the ID of the waveband that has been active on the ring
light during its exposure. Then, several processing steps are performed in order to
calibrate, optimize and merge the images into a multispectral image cube.

6.3.1 Fixed Pattern Noise Correction

Both Goldeye cameras that are used in the context of this work feature an internal two-
point non-uniformity correction, which can be adapted to varying exposure times.
This correction method sets an individual offset and gain factor for each detector cell
on the focal plane array (FPA) in order to compensate for varying sensitivity and dark

1Qt is a cross-platform application framework; see http://qt.io/
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currents. Nevertheless, it was found that under-exposed images show significant
fixed pattern noise that is not sufficiently accounted for by the internal correction
and varies with the actual pixel intensities. As the proposed system design requires
to capture a reference image without flashing the ring light that is subtracted from
the individual waveband channels in order to create a multispectral image cube, this
fixed pattern noise has noticeable influence on images taken in dark environments,
as demonstrated in Figure 6.9.

(a) Fixed pattern noise on a dark image (accentu-
ated) with histogram (actual 12 bit values).

(b) Fixed pattern noise on a multispectral image
cube in false color representation.

Figure 6.9: Fixed pattern noise in images captured with the Goldeye P-032 and
its influence on a multispectral image cube (wavebands at 1060 nm, 1300 nm and
1550 nm).

To analyze the sensor’s behavior in detail, the sensor area was homogeneously
illuminated using an adjustable quartz halogen lamp through an integrating (Ul-
bricht) sphere positioned in a darkroom and 70 images with increasing brightness
were taken. The measurement setup is shown in Figure 6.10 on the next page. The
analysis of the acquired images proves that the fixed pattern noise is introduced by
an insufficient non-uniformity correction: the darkest and the brightest pixels in each
image vary from the average intensity, as shown in Figure 6.11 on the following page.

This analysis shows that the effect is non-linear, especially in the lower intensity
range, and thus can not be compensated by a (linear) two-point correction function.
To address this problem, three different approaches to compensate for the error of
each individual pixel have been evaluated in terms of correction quality and runtime
performance: fitting of a polynomial of up to the tenth degree to the full curves of each
individual pixel, cubical spline interpolation, as well as piecewise linear interpolation
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Figure 6.10: Measurement setup with an adjustable lamp connect via light guide to
an integrating Ulbricht sphere placed in a controlled environment.
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using the ground truth data from the 70 captured images as a look up table to apply
a multiple-point non-linearity correction to every single pixel.

Using a single thread on a standard desktop computer1, the polynomial correction
can be computed in about 2.5 ms on all 323068 pixels of the input images. However,
the polynomials are no good representation of the data and as a result, this method
is not capable of correcting the fixed pattern noise completely. The cubical spline
interpolation, on the other hand, matches the data very well and achieves a very
good compensation of the noise, but the fastest available implementation still required
18 ms for the correction of all pixels, probably due to inefficient search algorithms.
Therefore, the piecewise linear interpolation was implemented using a binary search
algorithm, which allows to find the correct pair of ground truth data from the 70
reference images to interpolate between with only 5 comparisons, leading to a run
time of about 5 ms with similarly good correction quality; see Section 7.1.1 on page 96.

6.3.2 Motion Compensation

As the proposed active camera system is based on field-sequential waveband captur-
ing (FSWC), motion compensation is required to avoid motion artifacts at the edges
of moving objects. In Chapter 4, different approaches to motion compensation for
FSWC imagery have been presented. For the implementation of the SkinCam system,
a trade-off between processing time and compensation quality on SWIR image se-
quences is necessary to maintain real-time operation. Based on the evaluation results
presented in Section 7.2, the best suited combination of preprocessing methods and
optical flow algorithm will be selected.

6.3.3 Camera and Ring Light Calibration

After the multispectral image cube has been properly aligned by compensating for
object motion, the ambient illumination captured in the “dark” reference channel is
subtracted from all waveband images. Then, lens distortion and differences in the
illumination intensities can be corrected as last steps in the image preprocessing.
For this purpose, three sets of multispectral image cubes are recorded for each lens:
first, a checkerboard calibration pattern is captured from different perspectives and
at different positions in the image. This set of images is used for the intrinsic camera
calibration, as well as to calculate a correction matrix for the lens distortion for every

1intel Core i7 4771 CPU, Ubuntu 14.04 64bit, GCC4.8



86 CHAPTER 6. SYSTEM DESIGN

waveband individually in order to compensate for different distortion characteristics
due to lateral chromatic aberration of the lens; see Section 2.4 on page 17.

A second set of images is captured in front of a plain white surface. These images
are used to determine both the vignetting effect of the lens and the light distribution
pattern of the ring light for each waveband in order to calculate a respective correction
matrix that allows to normalize the illumination intensity over the image area.

Finally, a third set of images is captured of a special “white reference” tile that
is known to have uniform remission characteristics in the full SWIR spectral range.
These images are used to detect absolute differences in illumination intensities be-
tween the different wavebands, which are stored as a vector of correction factors and
applied on every waveband image as last step in the image preprocessing to achieve
a proper balancing of the channels. This process is very similar to the “white balance”
settings of common RGB cameras, but in contrast to these passive imaging systems,
it is widely independent from ambient light.

6.4 Image Analyis

When preprocessing is finished, the skin detection method described in Section 5.2 on
page 58 is applied on the final multispectral image cube. The SkinCam software allows
to decide whether to use either the difference classifier or a machine-learning-based
classifier, or both sequentially, and provides a user interface to change the classifiers’
configurations. The result of the classification process is a binary image, which is
used for graphical highlighting of skin areas, as well as the face verification process.
For this purpose, a channel within the wavelength range of 1000 nm to 1100 nm is
extracted from each multispectral image cube and face recognition and verification
are applied as described in Section 5.3 on page 61, as this range is best suited for face
recognition due to the remission characteristics of human skin.

6.5 Eye Safety Evaluation

Eye safety is a critical aspect of high power SWIR illumination sources, as radiation
with a wavelength of up to 1400 nm can still penetrate the human eye and cause ther-
mal damage to the retina. The directive 2006/25/EG [119] of the European Parliament
defines binding permissible limits for illumination systems with pulsed light sources,
which should be measured as specified by the applicable standards. For the camera
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system proposed in this dissertation, the standard IEC 62471 [120] has to be applied.
To evaluate the eye safety of the SWIR ring light, the directive defines upper limits for
the effective radiance LR on the retina, which is weighted by a factor that depends on
the wavelength of the radiation, as well as for the total irradiance EIR on the cornea
at a measurement distance of d = 0.2m.

In the early development stages of this work, the necessary measurement setup
to perform such measurements was not available. Therefore, the incident power of
the SWIR radiation on the eye of an observer standing in the “sweet spot” of the
ring light has been analyzed based on optical simulation and information given in
the datasheets of the LEDs. For this purpose, a pupil diameter of ∅pupil ≥ 7mm is
assumed based on information in DIN 33402-2 [118] and a virtual target plane with
this size is positioned at a distance of d = 0.2m to measure the incident radiation.

For the first revision of the ring light, the maximum incident power is achieved
by the λ̂1 = 935nm waveband and reaches a total irradiance of EIR ≈ 17.3Wm−2 at a
“sweet spot” position. Due to the close distance to the ring light, there is no sweet
spot in the center of the ring light, but rather directly in front of each of the 10 LEDs of
this waveband. For the second revision of the ring light, the λ̂3 = 1300nm waveband
is the most powerful and creates the highest total irradiance. Although the combined
output power of this waveband is even higher than that of the 935 nm waveband
of the first revision, the total irradiance at a “sweet spot” position only amounts to
EIR ≈ 7.64Wm−2, as the output power is distributed over 40 LEDs instead of just 10.

Using a simplified model1 of the ring light, the plausibility of these results can be
tested by using the specifications given in the LEDs datasheets: the typical radiant
intensity of one 935 nm LED used in the first revision is given as Ie = 100mWsr−1 and
that of one 1300 nm LED used in the second revision as Ie = 38mWsr−1. If a worst case
scenario is assumed in which all LEDs for this waveband are continuously powered
and directly adjacent, the combined radiant intensity of n LEDs can be approximated
as I ≈ Ie ·n and the radiating surface as A ≈ n ·ALED. Then, the effective radiance LR
and the total irradiance EIR can be calculated as

LR =
I

Acosε1
·R(λ) , (6.2)

EIR =
I

d2 (6.3)

1The model is simplified in the “safe direction” by assuming a worst case scenario. In its default
operation mode, the ring light is a pulsed light source with even higher permissible limits.
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Table 6.1: Effective radiance and total irradiance of the ring lights most critical wave-
bands on the eye of an observer in a distance of d = 0.2m compared to applicable limits
according to [119].

LR [W/(m2
· sr)] EIR [Wm−2]

Ring Light Rev. 1
λ̂1 = 935nm

Simulation - 17.3
Calculation (worst case) 13590 25

Ring Light Rev. 2
λ̂3 = 1300nm

Simulation - 7.64
Calculation (worst case) 1216 38

Single SPAI LED module
λ̂2 = 1300nm

Simulation - 5.90
Calculation 515 5.57
Measurement - 5.69
Limit (t ≥ 1000s) ≈ 545000 100

with R(λ) being a correction factor according to directive 2006/25/EG [119], d = 0.2m
being the distance of an observer according to [120] and ε1 = 0◦ being the emission
angle towards the observers eye; see [45].

Table 6.1 shows simulated and calculated results for both ring light revisions, com-
pared to the applicable limits. As expected, the total irradiance calculated using the
simplified “worst case” model is much higher than the results from the simulation:
this worst case model assumes that all emitted radiation can reach the eye of the
observer, but in practice, the distances between the single LEDs on the ring lights are
too large in order for an observer in a close distance of d = 0.2m to be hit by the emit-
ted radiation from all of them. For an observer in a greater distance, the numerical
calculation and simulation results will be more similar, but also significantly smaller
as the the irradiance decreases with the squared distance.

In the context of the research project safe person detection in working areas of industrial
robots (SPAI), a much more powerful ring light designed by Sporrer et al. [23] for
safeguarding applications has been evaluated using a certified measurement setup by
the BG ETEM1. In this evaluation, the λ̂3 = 1550nm waveband was found to produce
the highest total irradiance of EIR = 18.36Wm−2 on an experimentally determined
“sweet spot” at the distance of d = 0.2m. In the theoretical worst case scenario, the
total irradiance of this waveband has been calculated as ÊIR ≈ 35.65Wm−2. Similar to
the differences in numerical calculation and simulation results, this large discrepancy
can be explained by the size of the ring light (0.4 m in diameter; see Appendix A)
and the LEDs angle of view (60◦) compared to the small measurement distance: the

1German employer’s liability insurance association for energy, textiles, electronics and media
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LED modules that are not directly in front of the measurement point have only minor
influence on the measured irradiance in practice.

A second result of this practical evaluation supports that both the simulation and
the numerical calculation lead to plausible values in simpler scenarios: the calculated
expected irradiance of a single LED module with a peak radiant intensity of Ie ≈

0.22Wsr−1 achieved very similar irradiance values in the simulation, as well as in the
actual measurements performed with this module; see Table 6.1.

In conclusion, both the simulated and the calculated worst case values are by far
below the permissible limits. Thus, the ring light is not expected to cause any damage
to the human eye, even if the observer stares right into it for a very long time. This
leaves some headroom for further increases of the output power in future work.

6.6 Depth from Chromatic Aberration

Depth information of a scene, e.g., a captured face of a subject that passes an eGate
system, can help to detect spoofing attacks. As described in Section 3.2.3, 3D depth
imaging has been proposed in prior work to address the vulnerability of face recog-
nition systems to presentation attacks using printed pictures or images and video
sequences shown on a mobile device. Besides providing a depth profile that allows
to reject flat objects as obvious two-dimensional presentation attacks, depth informa-
tion also allows to estimate an expected size of the face and to check the plausibility
of extracted features, such as the eye to eye width. In the following, a method is
described that allows to estimate rather coarse depth information from the acquired
multispectral images without the need for an additional 3D sensor.

As described in Section 2.4, longitudinal chromatic aberration leads to a shift in
the focal length of a lens depending on the wavelength of the light. Due to the
wide spectral range covered by the SkinCam system, this effect has a very noticeable
influence on the acquired multispectral images: an object can only be correctly focused
in one single waveband image and will suffer from out of focus blur in all other
wavebands. As shown in Figure 6.12 on the following page, the focus is shifted
from the front to the back for longer wavelengths. The effect can only be reduced by
closing the aperture to increase the depth of field [45]. However, it can be used as
an advantage in order to estimate a depth map of the captured scene, as shown by
Atif [121] and Trouvé et al. [122] in the context of RGB imaging.
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935nm 1050nm

1300nm 1550nm

Figure 6.12: Focus shift due to chromatic aberration.

Estimating depth information based on the focus of an optical system is a known
concept in the literature. If an object is correctly focused on the image plane of an
optical system with image distance di, its distance do from the lens with focal length
f can be determined using the thin lens formula [42]:

1
di
−

1
do

=
1
f
. (6.4)

In practice, however, finding the correct focus (i.e., image distance) is a non-trivial
problem [123]. As the image of incorrectly focused objects will be blurry, the correct
focus setting can be found by analyzing the level of sharpness of the object’s repre-
sentation on the image plane while changing the image distance until the image is as
sharp as possible, similar to the so-called contrast detection autofocus systems used
in many cameras [124]. To automatically find the sharpest representation, a metric
to measure the sharpness at a specific image area is necessary. Krotkov described
and evaluated several different metrics or “criterion functions” for this purpose and
found that the maximization of the gradient magnitude gives the most accurate and
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robust results [123]. The gradient magnitude G at a pixel coordinate (x, y) in image I
is calculated using the Sobel operator with the convolution kernels Sx and Sy [46]:

G(x, y) =
√

[Sx ∗ I(x, y)]2 + [Sy ∗ I(x, y)]2, (6.5)

Sx =


+1 0 −1
+2 0 −2
+1 0 −1

 , Sy =


+1 +2 −1
0 0 0
−1 −2 −1

 . (6.6)

Krotkov proposes to sum up the gradient magnitudes of all pixels within the analyzed
image area that exceed a certain threshold T in order to find the correct focus setting
with the highest value [123]:

max
∑

x

∑
y

G(x, y)2 with G(x, y) ≥ T. (6.7)

By performing a sweep over the full focus range of a lens and determining the
maximum gradient magnitude for each pixel, a depth map of the full image can
be created [124]. Besides the need for a motor-driven lens that allows to adjust the
focus electronically, performing a focus sweep takes a certain amount of time. An
alternative to a full sweep has first been proposed by Pentland [124], who introduced
the focal gradient as a source of depth information, which can be measured by either
estimating the blur of (originally sharp) edges or by capturing the same scene twice
with different aperture settings and estimating the change in the amount of blur due
to increased depth of field.

Similarly, the different waveband images of a multispectral imaging system can be
used instead of different aperture settings to estimate the focal gradient based on the
change of edge sharpness [121, 122]. Here, sharpness is analyzed using the gradient
magnitude as defined in Equation (6.6). To evaluate the focus shift of the SkinCam
setup, the camera was mounted on an automated linear stage and a test pattern
board was installed in a distance of 1.5 m in front of the linear stage. The aperture
of the lens was fully opened and it was focused at a distance of 2 m for the lowest
waveband. With this setup, the object distance between camera and test pattern was
automatically adjusted in a range of 1.5 m to 3 m in increments of 10 mm. At each step,
a multispectral image was captured and the sharpness of each waveband channel was
analyzed. Figure 6.13 on the following page presents the resulting progression of the
sharpness for both the 50 mm lens used in the context of this work and a 8 mm wide
angle lens for comparison. While the influence of the chromatic aberration is very
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obvious for 50 mm lens with a pronounced shift of the maximum sharpness, it is
much harder to assess for the 8 mm lens due to its a much larger depth of field.

Figure 6.13: Progression of sharpness with increasing distance in the different wave-
bands for two different lenses (f=50mm and f=8mm) at wide aperture (f/1.4) [116].

Using the setup described above, a large amount of training data has been created
using different kinds of target surfaces, including human faces. This data is used
to train a model tree classifier that allows to predict the object distance based on
the sharpness of object details; see Section 2.6.1. As this approach can only give
an accurate estimate of sharpness if some kind of texture or structure is present in
the analyzed image area, the resulting depth map will always be sparse and reliable
depth information will only be available along edges of the input images. To remove
outliers along these edges, a modified median filter kernel is used that discards all
values below a certain threshold in order to smooth only the actual edges. Results of
the depth estimation approach are presented in Section 7.3.

In order to create a dense depth map out of this sparse information, interpolation
has to be applied in post processing. Approaches to interpolate dense depth maps
from this sparse data have been described by [121], for example, but are not further
discussed in the context of this work.

6.7 Summary

This chapter presents the system design and setup of the SkinCam camera system
that implements the reference design of a skin detecting imaging system proposed in
Chapter 3. The design consists of three building blocks: the camera system hardware,
image processing and image analysis. The hardware setup combines a SWIR camera
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that is sensitive in a spectral range of 900 nm to 1700 nm with an active illumination
module or ring light consisting of LEDs in four distinct wavebands around λ1 =

935 nm, λ2 = 1060 nm, λ3 = 1300 nm and λ4 = 1550 nm (revision 1), or λ1 = 1050 nm,
λ2 = 1200 nm, λ3 = 1300 nm and λ4 = 1550 nm (revision 2), respectively. These
wavebands have been chosen based on the analysis of spectral data from a large
number of skin and material samples. The design of the illumination module and
the distribution of the LEDs have been optimized according to the results of optical
simulations. A microcontroller system is embedded in the ring light and controls the
LEDs synchronized to the camera’s exposure time. Image processing is performed on
a connected computer and consists of a fixed pattern noise correction, intrinsic camera
calibration, as well as a calibration of ring light homogeneity and “white balance”.
After this preprocessing, skin detection is applied on the multispectral images as
described in Chapter 5.

In addition, an evaluation of eye safety according to applicable norms and standards
is presented, as the ring light emits a significant amount of SWIR radiation. It is shown
that the irradiance on the eyes of an observer is far below the permissible limits.

Finally, an approach to estimate depth from defocus in the captured images is
described. Knowing the distance between the camera and a subject can, in practice,
help to detect spoofing attacks based on plausibility of the sizes and proportions. The
described approach is based on the analysis of changing edge sharpness due to focus
shifts between the different wavebands, which is caused by longitudinal chromatic
aberrations in the optical system and is shown to be very pronounced for lenses with
a narrow depth of field.
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Chapter 7

Concept Validation

In the following, the concept and reference design of a skin detecting camera system
proposed in Chapter 3 is validated based on the system design and implementation
described in Chapter 6. The results are presented in three separate sections: first,
the system itself is evaluated with respect to calibration, influence of ambient light,
operation range and distance estimation accuracy. Then, the skin detection method
proposed in Chapter 5 is evaluated on the basis of a study with more than 150
participants. Finally, the performance of the anti-spoofing approach is evaluated on
a dataset containing images of different masks and facial disguises.

Publications: A concept validation of an earlier development stage of the proposed system has
already been presented in [21], including results on skin detection performance. Additional
results on face verification performance were published in [22]. Detailed results of the motion
compensation approaches are included in [24]. Results on the depth from chromatic aberration
approach have already been presented by Velte [116].

7.1 System Evaluation

Figure 7.1 on the next page shows an example of the multispectral image cube acquired
by the implemented SkinCam camera system with the first revision of the ring light
after image preprocessing. The cube consists of four waveband images and a reference
image which is used to compensate for ambient light. For comparison, a color image
taken with a high quality RGB camera is given. Due to longitudinal chromatic
aberrations of the camera’s lens, it is impossible to have all waveband images perfectly
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RGB

Dark / Reference935nm 1060nm

1300nm 1550nm

Figure 7.1: The multispectral image cube acquired by the SWIR camera system com-
pared to an RGB color image.

focused at the same time; see Section 6.6. This effect can only be reduced by stopping
down the lens to a smaller aperture. As the waveband image around 1060 nm is best
suited for face detection, all images are captured with this waveband image correctly
focused while accepting a slight fall off in sharpness on the other waveband images.

7.1.1 Calibration Results

The first step in image processing is the correction of fixed pattern noise (FPN), as
described in Section 6.3.1. In Figure 7.2 on the facing page, the effectiveness of the
FPN correction method is demonstrated.

The evaluation of the illumination intensity and homogeneity of the ring light re-
vealed that, despite coming from the same manufacturer and having similar packages,
the different LED types have slightly different radiant patterns. However, this inho-
mogeneity, as well as different absolute intensities are compensated well by applying
the generated calibration matrices and correction factors as described in Section 6.3.3.
The calibration has been performed without ambient light at a distance of 1 m to
a homogeneously white target plane and is tested at a distance of 2 m with bright
ambient light. The results are shown in Figure 7.3 on the next page.
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(a) Before FPN correction. (b) After FPN correction.

Figure 7.2: Effectiveness of the fixed pattern noise (FPN) correction.
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(b) Ring light revision 2.

Figure 7.3: Ring light homogeneity before (left) and after (right) correction. Captured
at a distance of 2m to a target plane with bright ambient light.
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Figure 7.4: Remission intensities of the SWIR light pulses on a reference target and
resulting spectral error (SE) with increasing ambient light.

7.1.2 Influence of Ambient Light

To evaluate the influence of ambient light on the camera system, a series of images
of a reference target positioned in a distance of ≈ 1.5m was captured with varying
illumination conditions. The averaged illumination intensities measured on the refer-
ence target are shown in Figure 7.4. In this measurements, the ambient light is not yet
subtracted from the signal pulses. Fluorescent lamps are barely visible for the short-
wavelength infrared (SWIR) camera, while daylight and incandescent lamps increase
the overall brightness significantly. Even without reaching saturation, the sensor
shows some nonlinear behavior with increasing brightness levels: the signal strength
decreases by up to ≈ 20% between dark and bright ambient illumination. However,
Figure 7.4 shows that the relative intensity differences between the wavebands stay
almost the same with very low spectral error (SE), which is given in comparison to
the spectral distribution measured without ambient light. As a result, the influence
on the normalized differences and the classification results is only very small as long
as the sensor is not saturated: the standard deviation of the normalized differences
varies from 0.0022 to 0.0054. Saturation can be avoided easily by dynamically re-
ducing the exposure time. In conclusion, ambient light can be widely neglected, but
might reduce the maximum operation distance of the camera system.
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7.1.3 Operation Range

The maximum operation distance of the camera system depends on several factors.
The most important one is the radiated power of the ring light: with increasing
distance to a target, the acquired remission intensities will decrease exponentially
until they can no longer be distinguished from noise. In addition, with increasing
ambient light the signal strength slightly decreases, while the shot noise (and, thus, the
overall noise quantity) increases [125]. To evaluate the quality of the signal, both the
noise level in terms of the standard deviation of the reference image and the average
signal amplitudes for a target at different distances was measured in both dark and
bright environments and the signal to noise ratio (SNR) was calculated according to
Equation (2.2) on page 16. Results are presented in Table 7.1.

Table 7.1: Signal to noise ratio (SNR) of the ring light illumination for different target
distances and ambient lighting conditions.

Dist. Amb. Rev. 1 SNR [dB] Rev. 2 SNR [dB]
[m] Light λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

dark 25 30 30 29 31 32 31 321.0 bright 24 28 28 28 29 30 29 30
dark 22 27 27 27 28 29 29 301.5 bright 20 25 25 25 26 27 27 28
dark 20 25 25 25 26 27 27 282.0 bright 18 23 23 23 24 25 25 26
dark 18 23 23 23 24 25 25 262.5 bright 16 21 21 21 23 23 23 24
dark 17 22 22 22 23 24 24 253.0 bright 15 20 20 19 21 22 22 23
dark 16 21 21 20 22 23 23 243.5 bright 14 19 18 18 20 20 21 22
dark 15 20 20 19 21 22 22 234.0 bright 13 18 17 17 19 19 20 21
dark 14 19 19 18 20 21 21 224.5 bright 12 17 16 16 18 18 19 20
dark 13 18 18 18 19 20 21 215.0 bright 11 16 16 16 17 18 18 19

In the experiments on skin detection, a SNR ≥ 20dB was enough to ensure reliable
classification. For weaker signals, the classification performance started to decrease.
As a result, in bright daylight conditions (overcast sky at noon) the first revision of
the ring light can only be used at distances of up to 1.5 m without sacrificing the
reliability of the first waveband, while the second revision can cover up to 3.5 m. In
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dark environments or indoor locations without incandescent lamps, both revisions
achieve a higher SNR and the maximum operating distance increases by up to 1m.

Besides the signal-to-noise ratio, the resolution and field of view of the camera sys-
tem also put a limit on the operation range. For reliable face detection and recognition,
current state-of-the-art algorithms require the image of a face to have an eye-to-eye
resolution of ≥ 60 pixels [10]. For the current Goldeye cameras with a resolution of
636x508 pixels and the selected lens with an angle of view of AOV ≈ 18◦, this results
in a maximum operation distance of dmax ≈ 2m. To achieve a sufficiently high eye-
to-eye resolution at longer distances, either a higher resolution camera (currently not
available) or a lens with longer or variable focal length has to be used in practice.

7.2 Evaluation of Motion Compensation Performance

In the following, the field sequential waveband capturing (FSWC) motion compen-
sation approaches described in Chapter 4 are evaluated using different datasets and
quality measures. With a total number of 533 combinations of methods and prepro-
cessing options, the total amount of results is very extensive. Here, only a repre-
sentative selection is presented and the findings are summarized. Full results will be
made available to the research community along with the BRSU FSWC datasets on the
website of the Institute for Safety and Security Research (ISF) at the Bonn-Rhein-Sieg
University of Applied Sciences (BRSU): https://isf.h-brs.de.

All of the described methods can be implemented using any kind of block matching
or dense optical flow algorithm. In this work, GPU-accelerated implementations of
Brox, TV-L1, Lucas-Kanade (LK), TGV2 and Huber-based (HL1, HGRAD, HQUAD-
FIT) optical flow, as well as full search and fast approximate block matching algo-
rithms from standard libraries (openCV 2.4.11 and FlowLib 3.0) are used. All Brox-
and FlowLib-based optical flow algorithms have been applied twice, once with rec-
ommended (quality-oriented) parameters and once with parameters optimized for
speed1, which is denoted with a *. Optimal parameters for block matching have also
been found experimentally2. Computational efficiency is measured on a standard
desktop computer3 using the BRSU FSWC VIS-D dataset.

13 instead of 10 inner/solver iterations and warps each
2search field parameter p = 20, block size bs = 25
3intel Core i7 4771 CPU, nVidia GTX 780, Ubuntu 14.04 64bit, GCC4.8, CUDA 7.5

https://isf.h-brs.de
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7.2.1 Evaluation Setup

This section describes the datasets, creation of ground truth data and quality measures
that are used to evaluate the described approaches for FSWC motion compensation.
As there are no appropriate databases for comparing motion estimation and com-
pensation techniques on actual FSWC imagery, a large variety of field-sequential
multispectral SWIR and sRGB video sequences has been created in the context of this
work. These FSWC datasets include different test scenarios with translational and
rotational movement, and partially comprise ground truth data.

Datasets

Several different color/waveband-sequential image sequences are used as datasets for
the evaluation of all described motion compensation approaches:

1. Middlebury evaluation datasets: all color sequences with 8 frames from the Mid-
dlebury optical flow accuracy and interpolation evaluation benchmark1.

2. BRSU FSWC datasets: corresponding RGB and multispectral SWIR video se-
quences recorded using two cameras simultaneously. Some examples are shown
in Figure 7.5 on the following page, a detailed overview is given in Appendix C.

• Linear stage: video sequences of a test pattern board mounted on an auto-
mated linear stage, which performs translational movements with precise
repeatability; see Figure 7.5 (a). As the movement of the linear stage is com-
parably slow, capturing it with high frame rates introduces only a minor
amount of motion artifacts. Therefore, all sequences were captured twice,
at 30 and 10 frames per second (FPS), from the same perspective.

• Rotating wheel: video sequences of test pattern boards fixed on a rotating
wheel; see Figure 7.5 (b). The rotation was initialized manually and images
were captured at 30 FPS until the rotation stopped.

• Human movement: video sequences showing upper-body shots of a person
performing several different movements: walking by, moving sideways
while looking forward, tilting the upper body, tilting and rotating the head,
as well as waving with one and with both hands; see Figure 7.5 (c) and (d).
All of these sequences were captured with 30 FPS.

1http://vision.middlebury.edu/flow/
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(a) Linear stage. (b) Rotating wheel.

(c) Head tilting. (d) Walking.

Figure 7.5: Examples of the test scenarios included in the BRSU FSWC datasets.

The sequences from the BRSU FSWC datasets have been captured using both the
active SWIR camera system developed in the context of this work and a high quality
RGB camera with the same frame rate simultaneously. While the RGB camera uses
a Bayer pattern to capture all channels simultaneously, the SWIR camera system is
based on FSWC. For the creation of these datasets, it was configured to acquire three
wavebands and the additional obligatory “dark” reference channel for each frame.
The RGB images have been cropped and adjusted to match the field of view and
image center of the SWIR images. Any negative effects caused by demosaicing of
the RGB camera’s Bayer pattern (see Section 2.1.3 on page 10) is accounted for by
recording in high definition with 1920x1080 pixels and downsampling the images to
the resolution of the SWIR camera’s images, i.e. 636x508 pixels. All of these sequences
will be made available to the research community.
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Ground Truth

In order to perform an objective evaluation of the compensation quality, ground truth
information is required. Unfortunately, it is not easily possible to get ground truth
displacement vector fields for “real world” video sequences. Similarly, the amount of
motion artifacts on FSWC imagery before and after motion compensation can be rated
subjectively, but not objectively, unless there is a ground truth image of the exact same
scene at the exact same time without any motion artifacts. Therefore, FSWC datasets
comprising ground truth data have been created out of the RGB sequences, which
were acquired using simultaneous color/waveband capturing: all RGB sequences
were converted to waveband-sequential image sequences by (in turn) extracting only
one of the channels from each frame, thus reducing the effective frame rate. These
sequences are denoted as VIS. After applying motion compensation, all resulting
multispectral image cubes can be compared to the respective original RGB frames,
which serve as ground truth, using several quality measures; see Section 7.2.2.

To simulate an active camera system, a second set of waveband-sequential se-
quences has been prepared, denoted as VIS-D, by converting every fourth frame to a
gray scale image with reduced brightness, which is used as “dark” reference, while
the frames in between are used as spectral channels belonging to the same multispec-
tral image cube, just as before. Again, after applying motion compensation on these
sequences, they can be compared to the original frames.

However, for the video sequences acquired using the SWIR camera system, no
similar ground truth data is available. Therefore, the corresponding RGB sequences
are used in a cross-compensation approach. The SWIR camera system combines n = 4
channel images Ci,w (i.e., three wavebands plus dark reference) into one multispectral
image cube Mi, while the RGB camera acquires all channels of each frame M̂ j simul-
taneously, i.e., Ci,w and M̂i·4+w are acquired at the same time. The cross-compensation
approach applies the optical flow F(i,w)→(i,0) calculated for the SWIR channel Ci,w to
the RGB frame M̂i·4+w and compares the result to M̂i·4, which corresponds to Mi and
serves as ground truth.

To match the field of view of the RGB camera to the SWIR camera, the RGB imagery
is shifted and cropped appropriately. However, the baseline between both cameras
of ≈ 20cm induces a slightly different perspective and, thus, a mismatch in the motion
fields. The application of extrinsic calibration in order to get a better matching has
been tested, but did prove to be very unreliable due to missing depth information: a
good calibration could only be found for one specific distance between camera and
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object. For other distances, the calibration introduced a significant additional error.
Therefore, extrinsic calibration was discarded.

To estimate the mismatch of the motion fields, a second dataset was recorded in
which the SWIR camera was replaced by another RGB camera. By applying the
same cross-compensation procedure to this “double RGB” setup, a baseline error for
the comparison of IEbase ≈ 2.7 was found. As IEbase is by far lower than the error of
the best FSWC motion compensation method with IE ≈ 6.6, this cross-compensation
approach appears to be valid within this range.

7.2.2 Quality Measures

The objective comparison of a compensated frame with the original frame is done
using the following quality measures:

• Interpolation error (IE) is defined as the root mean square of the L2 norm of the
vector of spectral channel differences between the interpolated, C̃i,w, and ground
truth images, Ci,w, of image cube Mi, analog to Baker et al. [36] and as used in
the Middlebury evaluation:

IEi =

√
1
N

∑
x,y

∑
w

(
C̃i,w(x, y)−Ci,w(x, y)

)2
, (7.1)

where N is the number of pixels.

• Peak signal to noise ratio (PSNR) is based on the mean squared error (MSE) and
commonly used to describe absolute differences in intensity values (0 ≤ Val ≤
maxVal) between of two images [126]:

MSE =
1

wN

∑
x,y

∑
w

(
C̃i,w(x, y)−Ci,w(x, y)

)2
(7.2)

PSNR = 10log10

(
maxVal2

MSE

)
. (7.3)

• Structural similarity index metric (SSIM) describes the similarity of images based
on structural information and is inspired by the human visual perception [126].

• Spectral error (SE) is defined as the root mean square of all pixel’s spectral angular
distance [32]. By representing spectra as vectors, the average angle between two
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vectors is calculated and amounts to 0◦ for similar and 90◦ for opposed spectra,
independent from pixel intensities:

SE =

√√√
1
N

∑
x,y

(
cos−1

∣∣∣∣∣ p1(x, y) ·p2(x, y)
‖p1(x, y)‖ · ‖p2(x, y)‖

∣∣∣∣∣)2

(7.4)

Here, N is the number of pixels, p1(x, y) ·p2(x, y) is the dot product of the vectors
describing the spectra of pixel (x, y) in image 1 and 2, and ‖...‖means the square
root of the sum of squares of all vector elements.

7.2.3 Performance Ranking

Analog to the Middlebury evaluation, all methods were ranked for each test sequence
based on the described quality measures. As PSNR and IE are related and can be
derived from each other, the ranking based on these measures will be identical. There-
fore, only IE contributes to the overall ranking here. Table 7.3 on the following page
shows the average ranks of the top-30 combinations of algorithms and approaches
in the upper part (above the line). For comparison, results of the original algorithms
without optimization for FSWC sequences and different inter-frame interpolation
(IFI) optimizations have been added in the lower part of the table. Please note that
this ranking does not allow to decide whether the compensation quality is sufficient
or not. For this purpose, a second table presenting absolute error values of the same
combinations (applied on the BRSU FSWC datasets only) is presented in Table 7.4 on
page 107. In addition, Figure 7.6 on page 108 allows to easily compare the motion
compensation performance to the computational efficiency of the different methods.
Here, C2R methods have been left out in favor of better clarity, as the difference to the
respective C2C methods is very small. Abbreviations are explained in Table 7.2.

Table 7.2: Abbreviations used in the context of the motion compensation evaluation.

Method based on Preprocessing Algorithms
-B all ch. bidir. N global norm. BM BM H2C HL2 Comp.
-U all ch. unidir. L local norm. BM-m BM mod. HG HGRAD
-2 partial 2 ch. H histogram equ. FBM FastBM TC TGV2CENSUS
-1 partial 1 ch. C CLAHE Br Brox LK LK
-N intens. norm. G gradient trans. TV TV-L1 HQM HQUADFIT MIX
-TG gradients HL HL1 HQN HQUADFIT NCC
-TC census FHL FAST HL1 HQS HQUADFIT SAD
-C correlation H1C HL1 Comp. PAC Pixelw. Art. Corr.
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Table 7.3: Results of the top-30 (upper part) and selected additional approaches (lower
part) on Middlebury and BRSU FSWC datasets; values are averaged ranks.

Approach Total
Avg.

BRSU FSWC Middlebury Time
[s]Method Preproc. Alg. VIS VIS-D SWIR VIS VIS-D

C2C-TG HG 54.00 33.64 44.00 41.11 118.73 32.52 0.235
C2R-TG HG 58.55 33.64 44.00 41.11 118.73 55.27 0.237
C2C-TG C HG 61.90 43.97 41.06 30.93 150.72 42.82 0.237
C2C-TG N+G LK* 62.97 101.73 20.39 43.59 94.77 54.35 0.043
C2C-N N Br 63.22 66.30 30.21 108.26 86.18 25.17 0.322
C2R-TG C HG 66.20 43.97 41.06 30.93 150.72 64.33 0.240
C2C-TG N+G LK 66.55 83.00 31.15 44.78 121.87 51.97 0.069
C2R-TG N+G LK* 72.51 101.73 20.39 43.59 94.77 102.07 0.043
C2R-TG N+G LK 73.96 83.00 31.15 44.78 121.87 89.00 0.068
C2R-N N Br 74.22 66.30 47.24 128.41 86.18 42.97 0.320
C2C-TG G HG 75.30 55.27 47.79 37.37 165.82 70.27 0.230
C2C-TG N+G HQS 80.35 64.06 77.36 66.89 142.28 51.13 0.175
C2R-TG G HG 83.22 55.27 47.79 37.37 165.82 109.87 0.235
C2C-TG C HQM 84.48 125.45 54.15 29.00 172.07 41.72 0.156
C2C-TG N HG 85.43 52.61 32.21 170.93 122.60 48.80 0.267
C2R-TG N+G HQS 85.48 64.06 77.36 66.89 142.28 76.82 0.180
C2R-TG C HQM 86.49 125.45 54.15 29.00 172.07 51.78 0.158
C2R-TG N HG 89.74 52.61 32.21 170.93 122.60 70.35 0.269
C2C-TG G HQM 90.59 117.67 61.39 53.30 167.60 53.00 0.166
C2C-TG L+G Br 92.60 112.94 57.21 63.04 124.25 105.58 0.483
C2C-TG N+G Br 93.54 122.15 47.76 61.22 129.97 106.58 0.339
C2C-N N Br* 95.41 125.21 54.70 99.11 124.05 73.98 0.072
C2C-TG HG* 99.53 77.73 83.70 92.93 146.23 97.07 0.044
C2C-N C Br 99.80 28.42 122.42 59.11 96.40 192.65 0.316
C2R-TG G HQM 100.12 117.67 61.39 53.30 167.60 100.65 0.171
C2C-TG C HG* 102.71 79.94 69.48 87.89 179.85 96.38 0.049
C2C-TG N+G HG 103.22 79.21 69.18 86.37 168.42 112.92 0.268
IFI-B Br 103.54 118.91 162.76 55.70 68.27 112.08 0.659
IFI-B HQS 105.49 124.88 175.79 46.93 59.72 120.15 0.302
C2R-N N Br* 107.63 125.21 65.21 128.30 124.05 95.37 0.067
IFI-U Br 158.60 180.73 237.94 94.33 100.02 179.97 0.322
C2C Br 193.28 61.58 250.30 285.56 89.67 279.30 0.315
C2C-TC TC 200.58 215.21 169.52 249.93 206.30 161.95 0.256
C2C-TG L+G BME 211.44 182.15 119.30 265.81 286.13 203.80 47.801
IFI+C2R Br+BM 221.05 188.03 301.79 157.96 176.62 280.85 11.944
IFI-2 Br 258.82 278.58 239.07 0.217
C2C-C HQN 261.57 301.03 194.15 395.22 256.40 161.07 0.157
IFI-1 Br 267.30 288.61 376.42 195.00 189.80 286.68 0.116
C2C-TG L+G BM 287.65 276.09 206.21 391.56 316.27 248.12 11.861
PAC PAC 390.56 371.09 419.42 358.67 413.07 0.014
C2C FBM 424.26 378.70 481.64 436.67 354.15 470.17 0.195
C2C LK 450.08 446.88 514.45 437.19 332.15 519.75 0.047
C2C BM 470.91 449.52 508.61 486.70 421.37 488.35 11.496
C2C TV 471.64 416.03 515.48 469.00 428.35 529.35 1.122
C2C HL 476.52 427.45 528.67 464.67 442.15 519.67 0.125
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Table 7.4: Average interpolation error of the top-30 (upper part) and selected addi-
tional approaches (lower part) on BRSU human movement FSWC datasets.

Approach Avg.
Rank

BRSU FSWC (VIS) BRSU FSWC (SWIR)
Method Preproc. Alg. IE PSNR SSIM SE IE PSNR SSIM SE
2C-TG HG 54.00 8.95 35.17 0.962 3.18 52.40 33.65 40.230 19.08
C2R-TG HG 58.55 8.95 35.17 0.962 3.18 52.40 33.66 40.230 19.09
C2C-TG C HG 61.90 9.14 35.03 0.961 3.27 45.58 35.64 20.777 18.40
C2C-TG N+G LK* 62.97 9.48 34.72 0.958 3.57 22.58 36.98 22.879 8.84
C2C-N N Br 63.22 9.63 34.58 0.961 3.36 24.76 37.84 16.438 12.63
C2R-TG C HG 66.20 9.14 35.03 0.961 3.27 45.58 35.64 20.778 18.40
C2C-TG N+G LK 66.55 9.12 35.40 0.958 3.50 29.52 38.64 31.406 10.62
C2R-TG N+G LK* 72.51 9.48 34.72 0.958 3.57 22.58 37.00 22.879 8.84
C2R-TG N+G LK 73.96 9.12 35.40 0.958 3.50 29.51 38.66 31.406 10.62
C2R-N N Br 74.22 9.63 34.58 0.961 3.36 28.58 39.18 16.437 12.77
C2C-TG G HG 75.30 9.62 35.17 0.959 3.29 27.10 40.41 21.616 18.47
C2C-TG N+G HQS 80.35 9.54 34.94 0.958 3.29 11.76 36.60 16.066 19.80
C2R-TG G HG 83.22 9.62 35.17 0.959 3.29 27.10 40.42 21.616 18.48
C2C-TG C HQM 84.48 11.13 33.78 0.953 3.54 53.32 33.91 33.652 10.93
C2C-TG N HG 85.43 9.20 34.82 0.961 3.31 34.99 38.34 38.156 18.78
C2R-TG N+G HQS 85.48 9.54 34.94 0.958 3.29 11.74 36.61 16.067 19.80
C2R-TG C HQM 86.49 11.13 33.78 0.953 3.54 53.25 33.94 33.653 10.91
C2R-TG N HG 89.74 9.20 34.82 0.961 3.31 34.98 38.35 38.156 18.78
C2C-TG G HQM 90.59 10.98 34.15 0.952 3.58 43.34 36.24 42.659 10.79
C2C-TG L+G Br 92.60 10.25 34.24 0.956 3.48 21.56 41.11 20.165 18.59
C2C-TG N+G Br 93.54 10.38 34.13 0.957 3.58 19.55 40.21 11.610 11.29
C2C-N N Br* 95.41 10.45 33.75 0.956 3.76 30.89 41.87 26.773 19.42
C2C-TG HG* 99.53 9.55 34.56 0.958 3.45 42.09 32.20 50.737 13.64
C2C-N C Br 99.80 8.86 35.43 0.963 3.13 15.41 35.66 16.364 12.38
C2R-TG G HQM 100.12 10.98 34.15 0.952 3.58 43.28 36.26 42.660 10.77
C2C-TG C HG* 102.71 9.66 34.52 0.957 3.47 31.97 34.57 33.193 15.32
C2C-TG N+G HG 103.22 9.93 34.73 0.957 3.42 22.06 38.23 20.268 17.86
IFI-B Br 103.54 12.46 33.03 0.948 3.34 39.65 32.83 30.248 12.38
IFI-B HQS 105.49 12.56 33.03 0.947 3.42 20.84 36.49 14.848 22.96
C2R-N N Br* 107.63 10.45 33.75 0.956 3.76 33.29 41.95 26.774 19.41
IFI-U Br 158.60 13.44 32.32 0.945 3.76 17.52 31.14 9.345 20.16
C2C Br 193.28 9.54 34.79 0.961 3.36 12.07 31.78 0.935 5.58
C2C-TC TC 200.58 12.02 32.13 0.946 4.25 13.90 32.58 15.665 15.53
C2C-TG L+G BME 211.44 11.38 32.78 0.953 4.12 46.82 37.27 46.926 17.32
IFI+C2C-N G - 221.05 12.75 32.34 0.949 3.73 47.47 33.46 28.706 19.70
C2C-C HQN 261.57 14.13 30.80 0.932 4.76 64.85 30.46 47.943 24.02
IFI-1 Br 267.30 17.57 29.54 0.934 4.54 28.69 28.45 13.289 23.61
C2C-TG L+G BM 287.65 13.13 31.30 0.939 4.72 60.21 32.88 52.289 16.66
PAC PAC 390.56 20.48 27.92 0.913 5.63 - - - -
Uncompensated 412.43 25.60 25.70 0.910 6.28 - - - -
C2C FBM 424.26 19.26 27.40 0.919 7.02 47.78 33.70 28.834 34.74
C2C LK 450.08 27.35 24.18 0.891 9.16 73.15 23.45 26.433 26.75
C2C BM 470.91 25.76 24.76 0.895 8.42 59.44 31.44 23.521 37.11
C2C TV 471.64 25.45 24.93 0.909 8.57 62.29 17.11 0.707 26.37
C2C HL 476.52 25.12 24.94 0.909 8.41 65.70 16.57 0.679 26.67
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Figure 7.6: Scatter plot showing accuracy and processing time of the described FSWC
motion compensation approaches.
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To illustrate the performance of the different approaches, the first frames from the
human movement sequence “waving with one hand” and a selection of compensation
results achieved by different approaches are shown in Figure 7.7 on the following
page.

Varying the number of optical flow calculations in IFI

Table 7.3 on page 106 includes IFI results using all channels bi- (IFI-B) and unidi-
rectional (IFI-U), first and last channel (IFI-2), as well as first channel only (IFI-1)
interpolation based on the Brox algorithm. Brox was found to perform best for IFI,
followed by Huber-based HQUADFIT SAD and (FAST) HL1, which run up to 3 times
faster. For all algorithms, a reduction of the number of optical flow calculations de-
creases the processing time almost proportionally, while increasing the error at the
same time, as shown in Table 7.5. In addition, Figure 7.8 on page 111 presents a
diagram showing the relative error reduction on the y-axis versus the frame rate on
the x-axis for the FAST HL1 algorithm with default and speed-optimized parame-
ters, which lead to a much shorter processing time with only minor impact on the
compensation quality. Depending on the performance requirements of a particular
(real time) application at hand, this approach allows to find an acceptable trade-off

between quality and speed.

Table 7.5: Processing time and compensation quality of IFI methods using different
dense optical flow algorithms.

Method Time [s] IE SSIM SE
Uncompensated 32.38 0.832 10.11
TV-L1 IFI-B (6xOF) 0.682 19.89 0.883 6.71
TV-L1 IFI-U (3xOF) 0.348 20.80 0.880 7.34
TV-L1 IFI-2 (2xOF) 0.238 22.62 0.871 7.38
TV-L1 IFI-1 (1xOF) 0.129 27.24 0.852 8.55
Brox IFI-B (6xOF) 0.659 17.99 0.891 5.69
Brox IFI-U (3xOF) 0.322 19.28 0.886 6.57
Brox IFI-2 (2xOF) 0.217 21.18 0.878 6.67
Brox IFI-1 (1xOF) 0.116 26.49 0.856 8.41
FAST HL1 IFI-B (6xOF) 0.227 19.10 0.885 6.36
FAST HL1 IFI-U (3xOF) 0.126 19.78 0.882 6.93
FAST HL1 IFI-2 (2xOF) 0.090 21.39 0.874 6.99
FAST HL1 IFI-1 (1xOF) 0.051 26.67 0.852 8.48
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Figure 7.7: Examples of a multispectral FSWC frame from the BRSU dataset “waving
with one hand” before and after motion compensation.
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Figure 7.8: Relative interpolation error (IE) reduction versus frame rate of IFI methods
using FAST HL1 (* = speed-optimized) applied on the BRSU FSWC datasets.

Differences of ICM C2C and C2R

From the results presented in Table 7.3 on page 106 it is obvious that the channel to
channel (C2C) variants of the inter-channel matching (ICM) methods perform con-
sistently better than the channel to reference (C2R) variants. This has been found
to be true for all combinations of preprocessing approaches and optical flow algo-
rithms throughout this evaluation and leads to the conclusion that smaller object
displacements have a noticeable influence on the compensation quality.

Comparing IFI and ICM

On the Middlebury VIS sequences (created without “dark” reference), bidirectional IFI
(IFI-B) can not be matched by any ICM approach. Compared to IFI-U, however, the
best ICM methods perform slightly better at comparable processing times. On the
Middlebury VIS-D (created with an additional “dark” reference channel) and all BRSU
FSWC sequences, which have a higher amount of non-linear motion, i.e., changes of
motion direction and speed, several ICM methods perform significantly better than
the best IFI approach.
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Handling of Inconsistent Intensities

Without any preprocessing of the input images, only the Brox algorithm is capable of
handling the inconsistent intensities with ICM methods to some degree. Combined
with normalized intensities (ICM-N), Brox also performs very well in the overall
ranking and is only surpassed by methods based on transformation to gradients
(ICM-TG) using the HGRAD algorithm, as well as (surprisingly) the comparably
simple Lucas-Kanade optical flow algorithm. Neither census transform (ICM-TC)
nor NCC (ICM-C) can deliver similarly good results. When taking processing time
into account as well, ICM-TG with speed-optimized HGRAD or the Lucas-Kanade
optical flow after normalization and transformation to gradients delivers outstanding
results.

Due to the computationally very expensive calculation of mutual information, see
Section 4.3.3 on page 51, this approach has been evaluated in an independent second
run using downscaled images from the Middlebury dataset with a resolution of only
320x240 pixels. Block size and search range have been reduced to bs = 11 and p = 10
accordingly. Table 7.6 presents the results of block matching results using mutual
information as inverse cost function compared to the transformation to gradients. It
is shown that MI-based compensation does not work well and even increases the
amount of motion artifacts.

Table 7.6: Results of block matching based on mutual information.

Method IE
Uncompensated 33.23
C2C BM 40.47
C2C-C Mut.Inf. BM 42.78
C2C-TG G BM 30.40

Combination of IFI and ICM

The combination of IFI and ICM (see Section 4.2.3 on page 49) is implemented using
the Brox optical flow algorithm for the IFI step (all channels unidirectional, IFI-U) and
the full search block matching for the ICM step. Here, the cost function for the block
matching algorithm, which is based on the sum of absolute differences (SAD) [56],



7.2. EVALUATION OF MOTION COMPENSATION PERFORMANCE 113

has been modified by adding additional costs depending on the deviation ~d from the
initial displacement vector, weighted by a factor kv:

SADd(∆x,∆y) =

bs∑
j=0

bs∑
i=0

∣∣∣∣ f (x + i, y + j)− g(x + i +∆x, y + j +∆y)
∣∣∣∣+ kv ·

∣∣∣∣~d(x, y)
∣∣∣∣. (7.5)

As shown in Table 7.3 on page 106, this approach gives mediocre results on all
datasets: in almost all cases, the ICM matching in the second step fails to improve on
the initial IFI flow estimation, probably due to the generally low performance of the
block matching algorithm. In future work, the approach should be implemented with
a better optical flow algorithm for the ICM step, which might lead to better results.

Extended Cost Function for BM

As shown in both Table 7.3 on page 106 and Figure 7.6 on page 108, the extended
cost function (ECF) does increase the performance of full search block matching at
the cost of drastically increased processing times. However, neither original nor ECF-
enhanced block matching get near the results of the dense optical flow approaches in
terms of accuracy or speed.

Pixelwise Artifact Correction

The pixelwise artifact correction (PAC) performs comparably bad regarding the com-
pensation quality, but the approach is computationally very effective and fast, al-
though it is the only algorithm that does not rely on GPU acceleration; see Table 7.3
on page 106 and Figure 7.6 on page 108.

7.2.4 Influence of Low-Intensity Reference Channels

Active multispectral imaging systems capture an additional reference image without
active illumination. The intensity of this “dark” reference represents the amount
of ambient light that is captured by the camera and has to be subtracted from all
channels. If its intensity is very low, the performance of ICM methods will decrease,
as the matching of the spectral channels to the reference channel gets more difficult due
to the stronger variations in intensity. To evaluate the influence of the illumination,
one of the human movement sequences from the BRSU FSWC dataset has been used
to create waveband-sequential sequences with increasingly bright reference channels
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Figure 7.9: Relative IE reduction of IFI and ICM methods depending on the relative
intensity of the “dark” reference.

between 0% and 90% of the original image’s intensity. Figure 7.9 presents the relative
IE reduction achieved by compensating these sequences using IFI and ICM methods.

While the IFI method achieves an almost constant error reduction of ≈ 43%, ICM
directly based on intensity does not work well for reference images with intensities
below 30% without applying any sort of preprocessing. However, if the intensity
is normalized by, e.g., global linear normalization or histogram equalization prior to
motion estimation, an intensity of ≥ 1% is enough for ICM to achieve better results
than IFI. Transforming the intensity information into gradients also benefits strongly
from a normalizing preprocessing step.

7.3 Distance Estimation Accuracy

To evaluate the error of the depth estimation approach described in Section 6.6, a
variety of test data with ground truth information was acquired by capturing images
of four different subjects, as well as several test patterns and different objects in the
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Figure 7.10: Distance estimation error using a model tree predictor.

(a) Input images. (b) Sobel-filtered images. (c) Depth estimation results.

Figure 7.11: Illustration of the distance estimation approach based on varying edge
sharpness due to chromatic aberration. Distance is illustrated by color.

distance range of 1.5 m to 3 m using an automated linear stage setup. The f=50 mm
lens was set to the widest aperture setting (f/1.4). As shown in Figure 7.10, the
resulting estimation error of the used model tree predictor is comparably high for
targets without sharp edges, such as human faces, while the distance to targets
with pronounced edge detail, such as printed patterns, can be predicted with higher
accuracy. Overall, a mean absolute error of 196 mm was achieved.

Figure 7.11 illustrates the results of the approach in practice: despite the application
of median filtering, the depth estimation along the edges of the upper body and arm
of the subject shows several discontinuities, depicted by a change in color from red to
blue. Due to these rather imprecise depth estimation results with frequent outliers,
this approach is currently not used for any further image analysis such as face anti-
spoofing, as the amount of false rejections would have been too high. However, it
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was shown in related work by Atif [121] that this approach can be further improved
and, thus, might be of use in future work.

7.4 Evaluation of Skin Detection Performance

7.4.1 Study Design

In order to evaluate the robustness of the skin detection approach and to gather
training data for the classification algorithms, a study was designed in order to
acquire images of a large number of persons with both the SkinCam camera system
and a Canon EOS 50D RGB camera, as well as spectrometer data in the spectral
range of 660nm to 1700nm using a TQ irSys 1.7 spectrometer. A subset of the resulting
database, which includes all spectrometer data, as well as those images of participants
who agreed to publication, is available to the research community; see Appendix C.

In the following, we present data from 152 participants, consisting of 79 women
and 74 men. 42 of the 74 men had a beard or facial hair of some kind, while 63 of the
79 female participants have been wearing some sort of make-up or cosmetics. As this
will be a common situation in real-life applications, testing the influence of facial hair
and make-up was part of this study. Most of these datasets have been acquired in
the laboratory at the BRSU. However, some additional datasets were acquired at the
VISION 2014 trade fair and at the Institute for Occupational Safety and Health (IFA),
both with a reduced measurement setup. Therefore, multispectral SWIR images were
taken of all 152 persons, while RGB-color images in the visual (VIS) spectrum and
spectrometer data have only been acquired for 137 and 101 persons, respectively. As
most participants were students at the BRSU, the most common skin types are 2 and
3 and most of our participants were in their early twenties. The average age is ≈ 30.
The respective frequency distributions are shown in tables 7.7 and 7.8.

Table 7.7: Age distribution of study participants.

Age < 18 18-24 25-34 35-44 45-54 ≥ 55
N 2 67 43 13 16 12

Table 7.8: Skin type distribution of study participants.

Skin Type 1 2 3 4 5 6
N 3 45 92 9 3 1
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Figure 7.12: Spectrometer measurement points on face and arms.

For each subject, spectrometer data was acquired at 16 measuring points on face
and arms, shown in Figure 7.12. These points have been chosen as they cover all
skin regions that are typically expected in the field of view of a camera meant for face
detection. With both the RGB camera and the SkinCam system, seven portrait pictures
were taken for each subject: three frontal shots with different facial expressions, two
shots from an angle of ±45◦ and two profile shots from an angle of ±90◦. Subjects
wearing glasses were asked to take them off for these shots and an additional image
with glasses on was captured for comparison.

7.4.2 Data Analysis

In the following, both spectrometer and camera data is analyzed in detail in order
to proof the validity of the skin detection approach. For this purpose, the datasets
acquired during the study have been complemented with data acquired from a variety
of material samples, including different plastics, textiles, metal and wood. This data
does not contain any material samples designed with the intention to look similar
to real skin, but includes rather typical samples of clothing, interior or workpieces
that are found at offices as well as factories or workshops, for example. Therefore,
the classification performance presented here is rather general and not representative
for face verification applications. The classification performance for anti-spoofing is
evaluated in greater detail in Section 7.5.
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Spectrometer Data

For this evaluation, spectrometer data from only 12 of the 16 measuring points is used:
these include 0, 4, 6, 8, 9, 10, 11, 12, 13, 14 and 15. The remaining measuring points 1,
2, 5 and 7 have been left out as it was found that the amount of faulty measurements
was very high at these points, probably due to incorrect positioning of the measuring
probe. In total, 1111 skin samples have been combined with 335 samples of different
materials. The spectrometer data was convoluted with the remission spectra of LEDs
in the respective wavebands of both ring light revisions in order to simulate the
expected spectral signatures ~s′ of the camera system as described in Section 6.2.3.

In a first step, the normalized differences d(ga, gb) between all n = 4 wave-
bands of the spectral signatures ~s with 1 ≤ a < n − 1 and a < b < n are cal-
culated for all samples and a principle component analysis is applied on the
dataset. In the following, only the results for the waveband set of the
first ring light, R1, are presented. However, classification results are identi-
cal for both sets of wavebands (R1 = {935nm,1060nm,1300nm,1550nm}, R2 =

{1050nm,1200nm,1300nm,1550nm}). Figure 7.13 on the next page presents a plot
of the two main components, which already separate most of the samples. Using dif-
ference filters by specifying minimum and maximum thresholds for each normalized
difference, all skin samples can be separated perfectly from all material samples with
a precision of 1.0.

Camera Data

To analyze the data acquired with the camera system, the spectral signatures of skin
and a variety of other materials similar to those included in the spectrometer dataset
have been extracted from the images taken during the study with the help of a
software tool as described in Section 5.2.2. Pixels showing skin are stored as positive
examples, “non-skin” pixels as negative examples. Again, a principle component
analysis was applied on this dataset in a first step. The two main components are
illustrated in Figure 7.14 on the facing page: here, no perfect separation of both classes
is possible, as a few material samples overlap with the area of the skin samples. Using
the thresholding filter on normalized differences, almost all samples can be separated
from each other, as shown in Table 7.9 on page 120. An even better result is achieved
by using a support vector machine (SVM) as classifier, which is evaluated on this
dataset with 10-fold cross validation and leaves only one false positive (FP) result. In
conclusion, an almost perfect classification of skin and material samples is possible
with the proposed camera system.
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Figure 7.13: Plot of the spectrometer data mapped by its two main components.
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Figure 7.14: Plot of the spectral data extracted from individual pixels of the camera
dataset mapped by its two main components.
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Table 7.9: Confusion matrix and classification results for the spectral data extracted
from individual pixels of the camera dataset.

(a) difference filter classifier

Predicted Class
Skin Mat.

Actual Skin 158706 0
Class Mat. 8 96246

Precision 0.99995
Accuracy 0.99997

(b) SVM classifier

Predicted Class
Skin Mat.

Actual Skin 158706 0
Class Mat. 1 96253

Precision 0.99999
Accuracy 0.99999

Influence of Make-Up

In the context of the study, no significant influence of make-up on the skin classification
results was found. However, heavy theater make-up or multiple layers of powder
could potentially be a problem to skin detection. To evaluate this in detail, two subjects
were asked to use very large amounts of make-up and powder and additional images
were acquired. It was found that several layers of powder reflect a larger amount of
SWIR radiation and appear very bright in the SWIR images, while eyeliner and eye
shadow (both black and white) are more absorbing than skin in the SWIR spectral
range. An example is shown in Figure 7.15 on the facing page. Both types of
make-up might lead to false negative classifications and could, in theory, reduce
the availability of the face verification method due to false rejections. In practice,
however, this problem seems rather uncritical due to the large amounts of make-up
that are necessary to “hide” the skin completely.

7.5 Evaluation of Face Anti-Spoofing

To analyze the anti-spoofing and face verification performance of the presented cam-
era system, a database of images showing various spoofing attacks has been created
and is used in conjunction with the face images acquired during the study; see Sec-
tion 7.4.1. In the first step, the performance of the different classifiers for the per-pixel
material classification is evaluated on the combined databases. Then, the usability
and quality of the acquired SWIR images for face detection and recognition is tested
and finally, the spoof detection performance is evaluated for the two attack scenarios
“counterfeiting” and “disguise”, which have been introduced in Section 3.2.3.
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(a) VIS (RGB color) (b) SWIR (false color; 1060, 1300 and 1550nm)

Figure 7.15: Example of a subject wearing several layers of make up and powder.

As described in Section 5.3, the SkinCam system was designed without a specific
face recognition software in mind. Scientific open source solutions can be used as
well as commercial off the shelf solutions. In this evaluation, FaceVACS1 is used in
version 8.9.

7.5.1 Dataset and Test Design

For training and test of the classifiers and the spoof detection performance, a variety of
material that can be used to create spoofing attacks as well as different commercially
available masks and facial disguises have been acquired, including heavy make-up
and (fake) facial hair. In addition, several photo-fakes and masks, which mimic the
face of one of the test subjects, were manufactured in the context of the spoof detection
at biometric face recognition systems (FeGeb) research project conducted together
with the German Federal Office for Information Security2. Different materials have
been used for these masks, including special silicon mixtures, plastics, hard resin,

1Cognitec Systems GmbH, Dresden, Germany (http://www.cognitec.com)
2Bundesamt für Sicherheit in der Informationstechnik (BSI)
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Figure 7.16: Examples of evaluated spoofing attacks.

textiles and paper. Make-up and paint have been applied to the masks to make
them more realistic. A database of multispectral SWIR and RGB color images of these
spoofing attacks has been created and is provided to the research community to further
promote anti-spoofing research. Figure 7.16 shows a selection of the considered
spoofing attacks.

Normalized spectral signatures have been extracted from all skin and material
samples of both the face and the spoof database and were split up in distinct datasets
for training and testing. To proof the universal validity of the classifiers, the “skin”
samples used for training have been extracted from images of different persons than
those used for the test dataset. Due to the limited number of masks and facial
disguises, the same level of separation can not be achieved for the set of spoofing
attacks: here, different images of the same spoofs have been used to extract samples
for either test or training dataset. Both datasets contain roughly the same number of
“skin” and “non-skin” samples. As light make-up, facial cream or tattoos should not
be rejected as a spoofing attack per se, no such samples have been used for training,
but are included in the test dataset. Using the Weka machine learning environment,
support vector machine, binary decision tree and random forest classifiers have been
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trained and tested. Optimal parameters for the classifiers were experimentally found
by testing the resulting models using cross-validation.

7.5.2 Classification Accuracy

To evaluate the overall classification accuracy of the different classifiers, all learned
classification models have been applied on the same test dataset. The individual
results in the form of confusion matrices are shown in Table 7.10.

Table 7.10: Confusion matrices and classification results of the spectral data extracted
from individual pixels of the spoofing attack dataset.

(a) difference filter classifier

Predicted Class
Skin Mat.

Actual Skin 320322 65
Class Mat. 60975 265909

Precision 0.9998
Accuracy 0.9057

(b) SVM classifier

Predicted Class
Skin Mat.

Actual Skin 320008 378
Class Mat. 5319 321562

Precision 0.9988
Accuracy 0.9912

(c) binary decision tree (J48)

Predicted Class
Skin Mat.

Actual Skin 319437 949
Class Mat. 6726 320155

Precision 0.9794
Accuracy 0.9881

(d) random forest

Predicted Class
Skin Mat.

Actual Skin 319518 868
Class Mat. 5246 321635

Precision 0.9796
Accuracy 0.9906

Due to the way the normalized difference filter classifier is trained, the amount
of false negative results is very low with this classifier. However, a large amount
of material samples is falsely classified as “skin”, which potentially is a thread for
the safety of the anti-spoofing method. The best results in terms of both precision
and accuracy are achieved by the SVM classifier. Compared to the other classifiers,
the drawback of the SVM classifier is its much higher processing time: classifying
the test set with the SVM takes about 20 times longer than with the decision tree.
By combining the difference filter classifier sequentially with the SVM classifier, the
amount of false positives can be reduced only slightly to 5274, while the processing
time is reduced significantly to approx. 50% for the given test set and even further
for datasets including less skin samples.
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Both binary decision tree and random forest can be evaluated in less than one second
on the test set. While the results of the simple binary decision tree are noticeably worse
compared to the SVM, the random forest achieves the lowest number of false positives
on the test set at the cost of slightly higher false negatives.

In a more detailed analysis, the different spoof samples have been classified indi-
vidually. Results of the SVM classifier are included in Table 7.12 on page 126 and
Table 7.14 on page 128. All machine-learning-based classifiers are able to distinguish
most of these material samples from skin perfectly. However, artificial blood applied
on a fake scar was found to be particularly hard to distinguish from skin, probably
due to its high water content. Fortunately, this material is difficult to be applied for
spoofing attacks due to its liquid character.

7.5.3 False Rejection Rate

In the field of face recognition, the rejection of a valid face is called a false rejection,
similar to a false negative classification in machine learning. To evaluate the false
rejection rate (FRR) of the anti-spoofing methods masking (A) and ROI matching (B)
that have been proposed in Section 5.3, both methods are tested on the full dataset
of authentic (not disguised) faces. All 137 subjects for whom VIS (RGB-color) images
have been captured are enrolled in FaceVACS using three frontal images with varying
facial expressions for each subject. With a few exceptions due to faulty data there
are also three multispectral SWIR face images available for each subject, resulting in
a total number of 404 SWIR images. For this test, only the 1060 nm waveband has
been used, as it was found to be best suited for face recognition. As a cooperative
user scenario is expected, the influence of glasses has not been tested and only images
without glasses are used for training and testing. Results are shown in Tab. 7.11.

If the correct subject is predicted with a higher probability than any other subject,
this is denoted as a rank-1 identification. With a rank-1 identification rate of 100%,
the recognition performance surpasses that presented in prior work. However, for

Table 7.11: False rejection rate and face verification performance of both methods
using FaceVACS (trained on VIS images, queried with SWIR images).

404 images in total (A) Masking (B) ROI
Rank-1 Identification Rate 100 % 100 %
Above Verification Threshold 95.79 % 95.05 %
False Rejection Rate (FRR) 4.21 % 4.95 %
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some images, the matching score is slightly below FaceVACS’ internal threshold for a
successful verification result. Surprisingly, the matching score is slightly higher for
the masking method, which removes or “blacks out” non-skin pixels in the image,
while the ROI method uses the unmasked image for recognition. This leads to
the slightly lower false rejection rate of the masking method. Please note that the
ROI method allows to use VIS images as input for the face recognition system as
well. Additional experiments have shown that this reduces the false recognition rate
significantly, especially under good lighting conditions, as the error of matching VIS
and NIR images is removed. As described in Section 5.3.2, the ROI template and its
acceptance threshold has been designed to accept all of these faces. Therefore, no face
images were falsely rejected due to an incorrect spoofing detection. Furthermore,
neither facial hair nor make-up had any noticeable influence on the results.

7.5.4 Spoof Detection and False Acceptance Rate

To evaluate the anti-spoofing performance of both methods, two attack scenarios are
considered: disguise of the own identity and counterfeiting of a foreign identity.

Counterfeiting Scenario

In this scenario, an attacker tries to imitate the identity of a specific person to attack
face recognition systems working in the face verification mode, for example in order to
pass an automated border control gate using a fake passport. Here, a false acceptance
occurs if the attacker is falsely verified as the person he claims to be using a spoofing
attack, without the attack being detected by anti-spoofing methods. Table 7.12 on the
next page presents a list of spoofing attacks from the created dataset that have been
designed to counterfeit another person’s face.

While the 2D attacks can be produced very easily by capturing an image of a
face with a camera, the production of 3D masks is more complicated. Here, three
approaches have been tested with the same subject. The first and rather traditional
approach was to apply plaster on the subjects face to create a cast, which resembles
a “negative impression” of the face. Then, two “positive” masks have been created
by filling the cast with silicon and pressing it on the attackers face until the silicon
hardened. Obviously, this procedure can not easily be performed without the original
subject noticing it. The second approach was to take several images of the face from
different perspectives in order to create a rough 3D face model, which was used as
a basis for a 3D print with colored resin. Finally, the third approach was the use of
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Table 7.12: Evaluated spoofs for the counterfeiting scenario with false positive rate
(FPR) of the pixel-level classifier, number of false acceptances and total false accep-
tance rate (FAR) using FaceVACS compared to anti-spoofing methods (A) and (B). 2D
attacks include prints and images shown on mobile devices. * = with makeup.

Description / no. of images Classifier FPR FaceVACS (A) Masking (B) ROI
Full 2D attacks 9 0.0 9 0 0
Partial 2D attacks 12 0.0 12 0 0
Full mask 1, silicon 3 0.0 0 0 0
Full mask 2, silicon * 3 0.0 0 0 0
Full mask 3, silicon * 3 0.0 0 0 0
Full mask 4, plastic 3 0.0 0 0 0
Full mask 5, hard resin 3 0.0 3 0 0
Full mask 6, hard resin 3 0.0 3 0 0
Sum / FARcf 39 0.0 69.2% 0.0% 0.0%

a sophisticated 3D scanner to achieve a detailed 3D model of the face. From this
model, two versions were printed on another 3D printer: one “positive” mask, which
was manually colored in a final step, and one “negative” mask, which was created in
software and served as a cast to produce another silicon mask.

For each spoof, multiple images have been captured with three different attackers
and (if meaningful) variations of the attack. Without an additional anti-spoofing
method, all 2D attacks and the 3D-printed hard resin masks achieve scores similar
to or even higher than real faces using FaceVACS. The quality of the plastic and
silicon masks was not high enough for them to exceed the verification threshold,
although they missed it by just a few percent, probably due to the manual coloring.
Therefore, it must be expected that an attacker who is more skilled in mask-making
might eventually be able to produce a silicon mask that gets accepted by FaceVACS.

Both proposed anti-spoofing methods successfully reject all evaluated attacks and,
with regard to this scenario, achieve an FARcf = 0%. An example of the multispectral
SWIR image of a silicon mask and its classification result compared to the corre-
sponding RGB color image is shown in Figure 7.17 on the facing page. Furthermore,
Table 7.13 shows a qualitative comparison of these results to prior work.

Disguise Scenario

This scenario focuses on situations in which an attacker does not need to counterfeit
a specific person’s identity, but simply tries to disguise his own, for example, because
his face is known and “blacklisted”. Therefore, for this scenario, a false acceptance
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(a) Original RGB image. (b) Spoof RGB image. (c) Spoof SWIR image. (d) Spoof classification.

Figure 7.17: (a): Original face; (b)-(d): RGB color image, SWIR false-color image and
classification result of an attackers face with a silicon mask of the original face.

Table 7.13: Qualitative comparison to reported results of existing approaches on
different datasets. * = Based on Rank-1-Identification; ** = only 2D attacks

Method FAR FRR
(A) Masking 0.0 4.21 / 0.0*
(B) ROI 0.0 4.95 / 0.0*
Buciu et al. [100]** 2.5 6.2
Kose et al. [103] 14.0 / 9.1 9.8 / 18.8
Wang et al. [105] 3.0 3.3
Yi et al. [127]** 0.0 6.0

occurs if the attacker can hide his identity without the spoof being detected. Possible
examples for this scenario are face recognition systems used to protect public or
critical infrastructure, which might rely on a database of known persons who are
not allowed to enter. A known hooligan, for example, who is not allowed to enter a
football stadium, might try to attack such a system by disguising his face in a way
that is still detected as a face, but not recognized as his.

Obviously, the attacks evaluated in the counterfeiting scenario also allow an attacker
to disguise his identity. Additionally, several partial disguises and alterations to a
face have been tested, which are listed in Table 7.14 on the next page. For each spoof,
the table lists the number of correct identifications (i.e. the attacker did not succeed
with hiding his identity) and false acceptances using the standard FR system without
anti-spoofing, as well as both anti-spoofing methods. For the latter, the number of
detected spoofing attempts is given as well.

Without any anti-spoofing module, FaceVACS is easily tricked by all full face at-
tacks, but does perform well on the partial attacks: in all but two cases, it identifies
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the attacker in spite of them. For the partial 2D attacks (i.e. parts of the attackers face
are covered by a cropped image of another person’s face, which is also known to the
face recognition system), FaceVACS listed both the attacker and the imitated person
as matches. However, by combining several of these attacks, a successful disguise
might still be possible. In total, FaceVACS achieves an FARdg ≈ 34%.

Method (A) can detect spoofing attacks only by comparing face detection results
before and after masking out non-skin areas. Therefore, the detection of partial
disguises is not reliably possible with this method. At the same time, the disguises
are more successful on SWIR images than on the VIS images used for the evaluation
of FaceVACS. In combination, the attacker managed to disguise his true identity in
FARdg ≈ 7% of the query images without the attack being detected.

Method (B) detects most of the partial disguises and misses only those that are too
small or out of the specified regions, which is uncritical as these attacks are unlikely
to successfully disguise the identity. Only in one image of a face with fake eyebrows
and mustache, the attack is not detected and the attacker is not identified correctly.
By using a VIS image as input for the FR software instead of the SWIR image, which
is optionally possible with this method, the attacker is identified correctly in this case,
though. In total, the ROI method achieves an FARdg = 1%.

Receiver operating characteristics (i.e., ROC curves) for both scenarios are shown
in Figure 7.18. It has to be noted that the printed 2D attacks and hard resin masks
achieve recognition scores similar to real faces, while all other masks achieve far lower
scores. Thus, the ROC curves of FaceVACS appear as a step function, as either all
valid faces are falsely rejected or all of these spoofs are falsely accepted without a
slow transition.
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7.6 Summary

In this chapter, the proposed system design and preprocessing methods, as well as
skin detection and anti-spoofing performance are validated. In all of these aspects,
the design goals specified in Section 3.1 can be met by the realized camera system.

Results of the calibration methods for fixed pattern noise and ring light homogeneity
are presented and the influence of ambient light and the maximum operation range are
analyzed. Ambient light only has a minor impact on the acquired spectral signatures
and limits the operation range to approx. 1.5 m for the first ring light revision and
approx. 3.5 m for the second revision. Thus, the second revision easily covers the
typical operating distance of eGate systems.

Although not being a specified design goal, the accuracy of the depth estimation
method presented in Section 6.6 is evaluated as well. While the estimation is too
imprecise to provide three-dimensional geometry information of a face, it can still be
used as a validity check to support face anti-spoofing. However, due to a high number
of outliers, this method was not further used in this work, as the false rejection rate
would suffer strongly. In future work, this method will be further improved.

Furthermore, it is shown that motion artifacts at the edges of moving objects can
be significantly reduced to avoid disturbances of the spectral signatures using a
suited motion compensation approach. In total, 533 combinations of FSWC motion
compensation approaches, implemented using state-of-the-art block matching and
dense optical flow algorithms, are evaluated on a created database of FSWC image
sequences including ground truth information and on appropriate datasets from the
Middlebury optical flow evaluation. It is shown that the best ICM methods achieve
significantly higher accuracy compared to IFI methods, especially in the presence of
non-linear motion. A very good compromise between quality and real-time capable
processing times can be achieved by the runtime-optimized FlowLib implementation
of the Lukas-Kanade optical flow applied on normalized gradient images in a channel-
to-channel matching approach (denoted as C2C-TG N+G LK* in Section 7.2). For
multispectral image cubes with four wavebands plus reference channel, a frame rate
of up to 18 FPS can be achieved.

The performance and robustness of the skin classification approach is evaluated
based on data acquired during an extensive study that includes spectral remission
data and multispectral images of 152 participants and 355 material samples. Skin and
material samples can be separated almost perfectly using a machine-learning-based
classifier. Furthermore, neither typical make-up, nor the skin type, gender or age of
a subject have a significant influence on the classification results.
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Finally, the proposed anti-spoofing approach is validated. For this purpose, the
dataset is extended by multispectral images of different spoofing attacks, including
(partial) disguises such as fake facial hair or fake noses, as well as full face masks
made from silicon or latex. The results show that the proposed system achieves
unprecedented performance in skin and spoof detection.
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Chapter 8

Conclusions and Outlook

8.1 Summary

In this dissertation, a reference design and concept for an active multispectral short-
wavelength infrared (SWIR) imaging system optimized for skin detection and face
verification called SkinCam is presented and validated. Its fine-grained skin classi-
fication on pixel-level allows to detect and repel spoofing attacks at biometric face
recognition systems in order to increase both their security and acceptance. Despite
the significant progress in the field of face recognition, such attacks are still a serious
problem for the current state of the art [1, 12, 93].

The proposed skin detection method is based on the analysis of several narrow
wavebands in the SWIR spectral range. This so-called spectral signatures are well
suited to distinguish skin from other materials as the remission spectra of authentic
human skin are very characteristic in this spectral range and independent of the
skin type, age or gender of a subject. The spectral signatures are acquired by using
active (pulsed) illumination in the distinct wavebands in combination with a camera
that is sensitive to the full SWIR spectrum. This method of acquiring multispectral
image cubes is denoted as field sequential waveband capturing (FSWC). Compared
to other designs of multispectral imaging systems, FSWC-based imaging with active
illumination has several advantages: it eliminates the influences of ambient light
almost completely and allows for flexible waveband configuration as well as a fast
acquisition without degrading image resolution. In addition, the frontal illumination
avoids shadows and ensures reliable face recognition with constant conditions.

The proposed method raises two major challenges: first, due to the sequential wave-
band acquisition, an efficient and real-time capable motion compensation method is
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required. Second, an accurate pixel-level material classifier must be combined with
state-of-the-art face recognition methods without opening up new ways to attack the
recognition system. With respect to these challenges, the following methodological
contributions are presented in this work:

First approaches to motion compensation for FSWC-based imaging; see Chapter 4.

The major problem in motion compensation for FSWC imaging originates from
the varying remission intensities in the subsequent spectral channels, as most
state-of-the-art algorithms for motion estimation assume constant intensities of
corresponding pixels. This work presents two fundamental concepts to solve
this problem: inter-frame interpolation (IFI) and inter-channel matching (ICM).
While IFI estimates motion vector fields between corresponding channels of
successive multispectral cubes to avoid any inconsistencies of pixel intensities,
ICM estimates motion fields between neighboring channels within a multispec-
tral cube to achieve shorter displacement vectors. As this requires appropriate
handling of the inconsistent intensities, different approaches based on normal-
ization, intensity transformation and correlation are introduced. All methods
and variations are extensively evaluated on a newly created database of FSWC
imagery, partially comprising ground truth.

Cross-modal methods to integrate multispectral SWIR skin authentication into
existing face verification systems; see Chapter 5. Based on the extraction
of spectral signatures from individual pixels of multispectral SWIR images, a
two-stage skin classification approach is proposed. It consists of the coarse-
grained thresholding on normalized differences between the pixel intensities of
all spectral channels and a subsequent fine-grained classifier based on machine
learning techniques. For this purpose, binary decision trees, random forests and
support vector machines (SVMs) have been evaluated, with SVMs showing the
best overall classification performance.

To integrate this per-pixel skin classification with existing state-of-the-art face
recognition methods, two different methods are proposed which allow to verify
a face captured using SkinCam against a known face given by a previously
captured SWIR or even a visual (VIS) spectrum image, for example, from an
already existing face database. The first method masks out non-skin pixels
from a captured SWIR image prior to face recognition in a preprocessing step
to ensure that no (possibly forged) non-skin pixels are used in the recognition
process. It requires that a given face recognition system is capable of handling
SWIR imagery as input. In contrast to this, the second method allows to use two
cameras to capture both a VIS and a SWIR image of the same face simultaneously
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and can thus easily be used to enhance any given face recognition system. It
applies skin classification on the SWIR image and performs anti-spoofing based
on a generic region of interest (ROI) in a postprocessing step, while the face
recognition system can be fed with either the SWIR or the VIS image.

Furthermore, this work presents the system design, implementation and in-depth
validation of a camera system with active LED illumination that is based on the pro-
posed reference design; see Chapter 6. This includes the following, rather engineering
oriented contributions:

The camera system design, setup and implementation details. The design is sepa-
rated into three major building blocks which are described in detail: the camera
system hardware, image processing and image analysis. The developed cam-
era system is controlled with a microcontroller embedded into the illumination
module and acquires four-band multispectral image cubes in real time with up
to 20 FPS. Wavebands of the ring light have been selected based on the analysis
of spectral data with a special software tool. Its design was optimized using
optical simulations to achieve a homogeneous illumination. Image process-
ing and analysis is performed in software on a connected PC and includes a
fixed pattern noise correction, motion compensation, intrinsic camera and ring
light calibration, as well as two-stage skin classification and cross-modal face
verification methods.

An eye safety evaluation for the illumination module. As the emitted SWIR
radiation is not visible to the human eye, an evaluation of the eye safety is indis-
pensable. Using both simulations and calculations based on a theoretical worst
case scenario, the irradiance on the eye of an observer is estimated according to
applicable norms and shown to be far below permissible limits.

A depth estimation method based on chromatic aberrations. Longitudinal chro-
matic aberration lead to a focus shift of the camera system depending on the
waveband. This inevitable flaw of each optical system is used to estimate the
distance between the camera and an object in the image within a limited dis-
tance range. However, this method showed to be rather imprecise in practice
and needs to be improved in future work in order to be of use for further image
analysis.

Finally, the proposed concept and methods are validated based on an in-depth eval-
uation of the implemented camera system; see Chapter 7. Results of the calibration
methods are presented, the influence of ambient light and the maximum operation
range of the developed system are analyzed and reach all specified design goals. In
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addition, an extensive study was carried out in the context of this work in order to
acquire spectral data and multispectral images of 152 participants and 355 material
samples to evaluate the skin classification performance. This dataset was further
extended by multispectral images of different spoofing attacks used to validate the
proposed anti-spoofing approach. It was shown that the proposed system achieves
unprecedented performance in skin and spoof detection.

All databases that have been created in the context of this work, i.e., the FSWC
motion compensation sequences, skin and face database, as well as the database
of spoofing attacks, are available to the research community on the website of the
Institute for Safety and Security Research (ISF) of the Bonn-Rhein-Sieg University of
Applied Sciences (BRSU): https://isf.h-brs.de.

8.2 Outlook to Other Applications

Besides its use for face verification, reliable image-based skin detection can also help
to increase the safety at robot workplaces up to the required reliability values, espe-
cially when it comes to human-robot collaboration in so-called joint-action scenarios.
The feasibility of this approach has been investigated in the context of the research
project safe person detection in working areas of industrial robots (SPAI). The proposed
safeguarding concept is demonstrated in Figure 8.1 on the next page: a slow down
or stop signal for the robot is triggered as soon as the safety zone (yellow) is entered
by a person. As soon as a person or his/her limbs enter the dangerous zone (red),
any dangerous motion must already be stopped. This concept introduces slightly
different requirements compared to the face verification application scenarios:

1. Sufficiently fast processing and reaction time. The industrial standard ISO-
13855 [128] defines an expected approaching speed of a human towards a
dangerous zone with v < 2ms−1 and provides a method to calculate the re-
quired minimum size of the observed safety zone for protective devices based
on its reaction time, which can be adapted here.

2. Sufficient operating range and spatial resolution. The angle of view and operat-
ing range of the safeguarding camera system has to be wide enough to cover the
complete safety zone. Based on the specification of a state-of-the-art vision-based
protective device, the SafetyEYE1, an angle of view of α ≈ 65◦ and an operating
range of dmax = 7m is regarded as feasible in practice. At the same time, the

1Pilz GmbH & Co. KG (Ostfildern, Germany)

https://isf.h-brs.de
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Figure 8.1: Concept for safeguarding of a robot arm with a safety (yellow) and a
dangerous (red) zone.

spatial resolution must be fine-grained enough to capture image details such
as hands or, depending on the specific application, even fingers of a person
everywhere within the safety zone.

3. Avoidance of occlusions. Occlusions might impose a safety risk if skin is occluded
by another object. Therefore, the camera system should be set up at a place that
reduces the risk of occlusions. An alternative might be the use of multiple
cameras that are set up at different locations around the safety zone or to move
the camera mechanically according to the movements of the robot in order to
keep a clear field of view.

A modified system setup based on the camera system described in this dissertation
that addresses the safeguarding application has been presented by Sporrer et al. [23].
It includes wide angle optics and a specifically optimized ring light, which fulfills
the requirements specified above. Image analysis has been extended by a method
that matches pixels classified as skin to additional binary masks that define either a
warning or a safety zone. In future work, this safeguarding system will be extended
with additional modalities and evaluated in greater detail.
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Appendix A

Hardware Documentation

A.1 Camera Specifications

Table A.1 provides technical specifications of the Allied Vision cameras (Goldeye
P032 and Goldeye G032) that are used in this work, as well as a comparison to
the Xenics Cheetah 640 CL. The data is taken from technical datasheets available at
www.alliedvision.com and www.xenics.com.

Table A.1: Technical specifications of Allied Vision Goldeye P-032, G-032 and Xenics
Cheetah SWIR cameras.

P-032 G-032 Cheetah 640 CL
FPA Resolution 636x508 636x508 640x512
FPA Operating Temp. 268 K 278 K 268 K
Max. Frame Rate 30 FPS 100 FPS 1730 FPS
Cell size 25x25 µm 25x25 µm 20x20 µm
Dark Noise 400 e− 400 e− 400 e−

Saturation Capacity 1.9 Me− 1.9 Me− 1.1 Me−

Dynamic Range 73 dB 73 dB 63 dB
Peak Quantum Efficiency 74 % 74 % 80 %
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A.2 LED Specifications

Table A.2 presents the specifications of the LED types used for the different illumi-
nation modules built in the context of this work and, for comparison, those built by
Sporrer [23] to address the safeguarding applications. It states the number (n), peak
wavelength (λp), FWHM (∆λ0.5), viewing angle (ϕ), radiated power (Φe) and total
radiated power (

∑
Φe) of the used LEDs.

Table A.2: Specifications of the different illumination modules and used LEDs.

(a) Ring light for face recognition, rev. 1. Power rating at IF = 100mA.

LED type n λp [nm] ∆λ0.5 [nm] ϕ [◦] Φe [mW]
∑

Φe [mW]
ELD-935-525 10 935 65 20 30 300
ELD-1060-525 30 1060 50 20 5.5 165
ELD-1300-525 20 1300 70 25 8.5 170
ELD-1550-525 30 1550 130 20 5.0 150

(b) Ring light for face recognition, rev. 2. Power rating at IF = 100mA.

LED type n λp [nm] ∆λ0.5 [nm] ϕ [◦] Φe [mW]
∑

Φe [mW]
EOLD-1050-525 40 1050 80 20 8.0 320
EOLD-1200-525 40 1200 70 20 7.0 280
EOLD-1300-525 40 1300 70 25 8.5 340
EOLD-1550-525 80 1550 130 20 3.3 264

(c) Ring light for safeguarding, rev. 1. Power rating at IF = 600mA.

LED type n λp [nm] ∆λ0.5 [nm] ϕ [◦] Φe [mW]
∑

Φe [mW]
L-970-66-60 8 970 40 60 500 4000
L-1300-66-60 8 1300 80 60 140 1120
L-1550-66-60 16 1550 100 60 60 960

(d) Ring light for safeguarding, rev. 2. Power rating at IF = 600mA.

LED type n λp [nm] ∆λ0.5 [nm] ϕ [◦] Φe [mW]
∑

Φe [mW]
L-1050-66-60 16 1050 55 60 120 1920
L-1300-66-60 16 1300 80 60 140 2240
L-1550-66-60 32 1550 100 60 60 1920
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A.3 Ring Light and Embedded System Design

For both ring light revisions, the LED placement patterns have been transferred to the
EAGLE CAD software and the required electrical circuits have been added, as well
as the already described components of the embedded microcontroller system; see
Section 6.2.2 on page 73. In order to provide the LEDs with an accurate and constant
forward current of up to IF = 200mA, adjustable versions of the LM1117 voltage
regulators are used. The LM1117ADJ creates a constant voltage of Vout = 1.25V at
its output pin1. By connecting their output and ground pins with a high precision
resistor, a constant current flow I = 1.25V/R is established between the ground pin
of the voltage regulator and the actual ground - here, the LEDs are added in series
connection. The supply voltage Vsupply = 12V of the ring light is provided by the AC
adapter of the camera. As the forward voltages of the LEDs can be up to VF ≤ 1.5V,
depending on the LED type, and sum up when using this type of connection, at most
8 LEDs can be connected in series. Thus, several of these supply lines have been
implemented in parallel.

The following Figures A.1, A.2, A.3, and A.4 present the schematics / circuit dia-
grams and board layouts of both ring light revisions with the embedded microcon-
troller systems.

1See LM1117 datasheets, e.g., by Texas Instrument
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Figure A.1: Schematics of the first ring light revision.
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Figure A.3: Schematics of the second ring light revision (LED lines not shown here).
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Figure A.4: Printed circuit board layout of the second ring light revision.
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Appendix B

Software Documentation

B.1 Software Design

The fundamental design of the SkinCam control software is illustrated in Figure B.1
on the next page. The presented UML class diagram is strongly simplified and
shows only the most important attributes and operations in favor of better clarity.
Furthermore, Figure B.2 on page 149 shows the basic process flow and inter-thread
communication during image acquisition.

B.2 Libraries and Tools

Table B.1: Development tools and libraries used in this work.

Tools Version
GNU C++ Compiler (g++) 4.8.2
Weka 3.6.10
Libraries Version
Qt Framework 5.4.1
openCV 2.4.11
nVidia CUDA 7.5
Allied Vision Vimba API 1.3
libSerial 0.6
cLandmark 2015-11
flowLib 2.2
libSVM 3.12
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Image Provider Image Processor Skin Detection

Main (GUI)
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preprocess image
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preprocess image
waveband 4
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Figure B.2: Sequence diagram describing the relations between tasks and threads of
the SkinCam control software.
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Appendix C

Datasets

In the context of this work, three databases have been created and are available for
download on the website of the Safety and Security Research Institute (ISF) of the
Bonn-Rhein-Sieg University of Applied Sciences (BRSU) on http://isf.h-brs.de/.

C.1 FSWC Optical Flow Database

This database contains a set of corresponding RGB color and multispectral short-
wavelength infrared (SWIR) video sequences recorded using two cameras simulta-
neously and is provided to other researchers in order to promote research on motion
compensation for FSWC based imaging systems; see Section 7.2 on page 100. Ex-
amples for each optical flow dataset are shown in Figure C.1 and Figure C.2. All
sequences have been captured twice, once with 30 FPS and once with 60 FPS. The
RGB and SWIR cameras had a slightly different perspective, but the sequences have
been centered, resampled and cropped to match each other as good as possible.

C.2 Skin/Face Database

The multispectral skin/face database consists of two parts:

Spectro: Contains spectrometer measurements acquired from 120 subjects, measured
at 16 positions on face, neck, arms and hands with a spectral range of 660 nm to
1700 nm using a irSys 1.7 spectrometer by TQ Group GmbH; see Section 7.4.2
on page 118. These remission measurements have been performed using a



152 APPENDIX C. DATASETS
Body

left/right(R
G

B
/SW

IR
)

Body
tilt(R

G
B

/SW
IR

)

Body
up

/dow
n

(R
G

B
/SW

IR
)

H
ead

left/right(R
G

B
/SW

IR
)

H
ead

tilt(R
G

B
/SW

IR
)

W
alking

by
(R

G
B

/SW
IR

)

Figure
C

.1:FSW
C

opticalflow
database:datasets

part1



C.2. SKIN/FACE DATABASE 153
W

av
in

g
on

e
ha

nd
(R

G
B

/
SW

IR
)

W
av

in
g

tw
o

ha
nd

s
(R

G
B

/
SW

IR
)

W
av

in
g

ci
rc

le
(R

G
B

/
SW

IR
)

Li
ne

ar
St

ag
e

(R
G

B
/

SW
IR

)

R
ot

at
in

g
W

he
el

(R
G

B
/

SW
IR

)

Fi
gu

re
C

.2
:F

SW
C

op
ti

ca
lfl

ow
da

ta
ba

se
:d

at
as

et
s

pa
rt

2



154 APPENDIX C. DATASETS

special two-way lightguide and a standard halogen lamp. For every data set,
information about gender, age and skin type are provided.

Face: Contains color (RGB) and multispectral SWIR images consisting of the wave-
bands λ1 = 935nm,λ2 = 1060nm,λ3 = 1300nm and λ4 = 1550nm, as well as the
corresponding spectrometer measurements, of (currently) more than 150 sub-
jects. The RGB images were taken with a Canon EOS 50D with a f=50 mm lens.
SWIR images were acquired with the SkinCam system described in this work.
As not all of the participants agreed to publication of the acquired images, only a
limited number of datasets is available to the public, including (currently) more
than 50 subjects. For every dataset, information about gender, age and skin
type are provided. Examples of the acquired images are shown in Figure 2.4 on
page 14.

C.3 Spoofing Attack Database

The spoof database contains RGB color and multispectral SWIR images consisting
of the wavebands λ1 = 935nm,λ2 = 1060nm,λ3 = 1300nm and λ4 = 1550nm as well
as the corresponding spectrometer measurements of a variety of spoofing attacks,
including (partial) facial disguises and masks; see Section 7.5.1 on page 121. The RGB
images were taken with a Canon EOS 50D with a 50 mm lens. SWIR images were
acquired with the SkinCam system described in this work. The dataset can be used
for training and testing of spoof detection methods using both modalities. Examples
of the included spoofing attacks are shown in Figure 7.16 on page 122.
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Acronyms & Abbreviations

BM block matching. See glossary.
BRSU Bonn-Rhein-Sieg University of Applied Sci-

ences

C2C channel to channel
C2R channel to reference
CLAHE contrast limited adaptive histogram equal-

ization

FN false negative
FNR false negative rate
FP false positive
FPR false positive rate
FPS frames per second
FRR false rejection rate
FSWC field-sequential waveband capturing. See

glossary.
FWHM full width at half maximum. See glossary.

GPU graphics processing unit

ICM inter-channel matching. See glossary.
IE interpolation error
IFI inter-frame interpolation. See glossary.
InGaAs indium-gallium-arsenide

LBP local binary pattern
LED light emitting diode
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NIR near infrared. See glossary.

OF optical flow. See glossary.

PSNR peak signal to noise ratio

ROI region of interest

SE spectral error
SNR signal to noise ratio
SSIM structural similarity index metric
SVM support vector machine. See glossary.
SWIR short-wavelength infrared. See glossary.

TN true negative
TNR true negative rate
TP true positive
TPR true positive rate

VIS visual spectrum. See glossary.
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Glossary

Anti-spoofing The term anti-spoofing refers to methods
used to harden biometric recognition sys-
tems against attacks with counterfeit biomet-
ric features. 6, 36, 40, 61, 68, 77, 117, 120, 122,
124, 125, 135, See also spoofing attack

Bayer pattern The Bayer pattern or Bayer filter is a color fil-
ter array that is directly mounted onto the
surface of an image sensor with a specific
pixelwise spatial distribution of green, blue
and red color filters. This distribution mim-
ics the sensitivity of the human eye. Color
information of an image is recorded using
neighboring pixels and interpolated in a pro-
cess called demosaiicing. 2, 10, 33

Binary decision tree Binary decision trees are used to classify new
observations of input data by a series of bi-
nary decisions along the path from the root
to a leaf node of a tree structure. Chapter
2.6.1 gives a detailed description of binary
decision trees. 20, 59, 122, 134

Block matching Block matching is a method to estimate mo-
tion between two images by dividing one im-
age into so-called macro blocks with a given
block size of several pixels and finding the
best match for these blocks in the second im-
age. Block matching typically only considers
translational movement. 18, 19, 42, 167
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Chromatic aberration Image defects that are caused by disper-
sion of light in an optical system are called
chromatic aberrations. As light with different
wavelengths is refracted at different angles, a
lens is not capable of focusing it on the same
point of the image plane, which causes lateral
chromatic aberrations which are strongest in
the outer areas of the image plane. In ad-
dition, the focal length also varies with the
wavelength of the light, which causes ax-
ial chromatic aberrations all over the image
plane. 18, 89, 95

Cooperative user scenario A cooperative user scenario describes a situa-
tion in which a subject cooperates with a face
recognition system by removing any occlu-
sions of his face such as glasses or headwear
and looking into the direction of the camera,
because he/she has a personal interest in be-
ing recognized correctly. 4, 6, 25, 61, 124, See
also face recognition

Face recognition Face recognition denotes the process of detect-
ing a face in an image and matching it against
a database of known (“enrolled”) faces; see
Section 2.7.1. 1, 3, 25, 27, 29, 32, 36, 40, 57, 61,
86, 124, 133, 134, 171

Face verification Face verification denotes a specific operation
mode of face recognition systems in which
a presented “query” face image is compared
to a known face of a person whose identity
is being claimed; see Section 2.7.1. 2, 36, 40,
86, 117, 133, See also face recognition

FaceVACS FaceVACS is a commercial off-the-shelf soft-
ware for face recognition developed by Cog-
nitec Systems GmbH. 28, 121, 127
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FeGeb The research project with the German title
Fälschungserkennung in der Gesichtsbiometrie
(FeGeb) deals with the detection of spoof-
ing attacks on biometric face recognition sys-
tems. It is funded by the German Federal
Ministry of Education and Research (BMBF)
as part of the program “FHprofUnt” (FKZ:
03FH044PX3) and supported by the German
Federal Office for Information Security (BSI).
2, 121

Field-seq. waveband capturing Following a definition in the field of color
imaging, the time-sequential acquisition of
images in distinct wavebands that are com-
bined into a multispectral image is denoted
as field-sequential waveband capturing. 12, 40,
41, 85, 167

Full width at half max. (FWHM) The full width at half maximum denotes the
width of a function or spectrum curve mea-
sured between those points on the curve at
which the function/spectrum reaches half of
the maximum amplitude. 10, 167

Hyperspectral imaging Hyperspectral imaging systems capture the
spectral information of a scene with very
high detail using a large number (often hun-
dreds) of narrow wavebands through a wide
spectral range. 9, 10, 33

Inter-channel matching (ICM) In this work, inter-channel matching denotes a
method for motion estimation and compen-
sation for FSWC-based imaging systems that
calculates displacement vectors between the
different spectral channels of a multispectral
image cube. As remission intensities of ob-
ject surfaces might differ between the spec-
tral channels, this method requires handling
of intensity inconsistencies. 42, 49, 167
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Inter-frame interpolation (IFI) In this work, inter-frame interpolation denotes
a method for motion estimation and com-
pensation for FSWC-based imaging systems
that calculates displacement vectors between
corresponding spectral channels of two con-
secutive multispectral image cubes. This
method avoids the need to handle intensity
inconsistencies due to different remission in-
tensities of object surfaces in different spec-
tral channels. 42, 49, 167

Model tree Model trees are used to predict continuous
output values from new observations of in-
put data using a linear model that is se-
lected by following a series of binary deci-
sions along the path from the root to a leaf
node of a tree structure. Chapter 2.6.1 gives
a detailed description of model trees. 21, 92,
115, See also binary decision tree

Motion compensation The term motion compensation describes the
process of estimating motion flow as ob-
served by a camera between successive im-
ages and “correcting” the differences be-
tween the two images by applying an in-
verted motion (or, displacement) vector field
on the later image. 6, 18, 34, 40, 41, 43, 85,
100, 101, 134

Multispectral imaging Multispectral imaging systems capture the
spectral information of a scene with higher
detail than conventional single- or three-
channel systems by using several distinct
wavebands that are specifically selected for
a given application. 2, 6, 9, 10, 12, 40, 133
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Near infrared (NIR) Electromagnetic radiation in the infrared (IR)
spectrum within a wavelength range of ap-
proximately 750 nm to 1400 nm is denoted
as near infrared or IR-A, according to DIN
and CIE. This wavelength range is situated
in between the visual spectrum (VIS) and
the short-wave infrared (SWIR) or IR-B spec-
trum. 2, 168, See also visual spectrum & short-
wavelength infrared

Optical flow The optical flow represents the velocity and di-
rection of apparent motion at the image plane
of a camera. Using two consecutive images,
it can be estimated by finding displacement
vectors between corresponding features. 18,
42, 100, 130, 168

Principal component analysis The principal component analysis is a tool that
allows to explore high-dimensional data by
finding essential patterns that can serve as
linear combinations to express the data with
reduced dimensionality. 27, 118

Random forest Random forests are used to classify new obser-
vations of input data by evaluating the indi-
vidual classification results of multiple, ran-
domly created binary decision trees. Chapter
2.6.2 gives a detailed description of random
forests. 21, 59, 122, 134, See also binary deci-
sion tree
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Short-wave infrared (SWIR) Electromagnetic radiation in the infrared
(IR) spectrum within a wavelength range
of about 1400 nm to 3000 nm is denoted
as the short-wavelength infrared or IR-B, ac-
cording to DIN and CIE. This wavelength
range is situated directly above the near in-
frared spectrum (NIR). The spectral signa-
tures discussed in this work are arranged
within the wavelength range of 900 nm to
1700 nm, which covers parts of both the NIR
and SWIR spectra. As most researchers as
well as camera manufacturers use only the
term SWIR when describing this wavelength
range in order to distinguish their research
area or products from those that reach only
up to 1µm, this work adopts this simplifica-
tion and uses only the term SWIR to describe
this wavelength range. 2, 57, 168, See also
near infrared

SkinCam The active multispectral SWIR camera sys-
tem developed in the context of this work is
denoted as SkinCam, which stands for skin
detecting camera. 69, 73, 95, 133

SPAI The research project with the German ti-
tle Sichere Personenerkennung im Arbeitsumfeld
von Industrierobotern (SPAI) focuses on safety
applications, especially in the field of indus-
trial robotics. It aims on the use of multispec-
tral SWIR imaging for a reliable detection of
persons and their limbs in the working range
of (possibly dangerous) robots. The project
is funded by the Institute for Occupational
Safety and Health of the German Social Ac-
cident Insurance (IFA). 2, 5, 88, 136

Spectral signature The spectral signature is a vector of multispec-
tral remission intensities. In this work, spec-
tral signatures are used to classify an object’s
surface material as “skin” or “non-skin”. 2,
6, 10, 20, 31, 57–59, 133, 134



Glossary 175

Spoof In the context of biometric recognition sys-
tems, a spoof is a counterfeit biometric fea-
ture, such as a mask or photo used to attack
face recognition systems or a fake finger used
to attack fingerprint recognition systems. 1,
3, 36, 61, 120

Spoofing attack The term spoofing attack denotes the attempt
to trick a biometric recognition system by
presenting a counterfeit biometric feature. 1,
3, 6, 30, 36, 57, 65, 89, 120, 133, 171, See also
spoof

Support vector machine (SVM) Support vector machines are supervised learn-
ing models that are used to classify data by
constructing a high dimensional space that
allows to separate different classes with a
maximized margin between them. Chapter
2.6.3 gives a detailed description of SVMs.
59, 122, 134, 168

Visual (VIS) spectrum The visual spectrum denotes electromagnetic
radiation in the spectral range between ap-
proximately 380 nm and 780 nm that is visi-
ble to the human eye. 1, 13, 68, 168
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