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Abstract

We propose a novel method for creating high-resolution
class activation maps from a given deep convolutional neu-
ral network which was trained for image classification. The
resulting class activation maps not only provide informa-
tion about the localization of the main objects and their in-
stances in the image, but are also accurate enough to pre-
dict their shapes. Rather than pursuing a weakly super-
vised learning strategy, the proposed algorithm is a multi-
scale extension of the classical class activation maps us-
ing a principal component analysis of the classification net-
work feature maps, guided filtering, and a conditional ran-
dom field. Nevertheless, the resulting shape information is
competitive with state-of-the-art weakly supervised segmen-
tation methods on datasets on which the latter have been
trained, while being significantly better at generalizing to
other datasets and unknown classes.

1. Introduction

The era of Deep Convolutional Neural Networks (DC-
NNs) has led to impressive advances on the problem of im-
age classification. The improvements in the network ar-
chitectures, for example in AlexNet [16], VGG [29], or
GoogLeNet [30], as well as the training of deeper models
were made possible by the availability of extremely large-
scale datasets such as ImageNet [8] in which images are
annotated with labels.

On the contrary, there is a limitation in creating big
datasets for learning-based approaches to image segmenta-
tion. Such datasets require a pixel-accurate labeling of thou-
sands of images by human observers. This is the reason why
researchers have turned their attention to weakly supervised
segmentation methods such as [4, 6, 22, 17, 5, 34] that take
advantage of training on labeled images without any local-
ization information. The goal is still to provide an accurate
segmentation without entirely relying on the availability of
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Figure 1. Illustrating the behavior of the proposed rCAM based
shape extraction: To detect the main objects in 1(a), the classical
CAM method [34] provides the rough location of the foreground
cow in 1(b). Smaller cows are located in 1(c) when the input image
is upsampled. However, neither 1(b) or 1(c) is accurate enough
to provide objects’ shape. Our extensions in 1(d) and 1(h) pro-
vide segmentations that are at least as detailed as the competing
methods [27] and [14] shown in 1(f) and 1(g), respectively, while
generalizing well over a wider variety of different datasets. Our
rCAM binarized version in 1(l) also shows better result than those
methods that produce binary segmentation maps such as [23], [15]
and [12] in 1(i), 1(j) and 1(k) respectively.

large-scale segmentation datasets.
Zhou et al. showed in [34] that some localization infor-

mation about the main object, i.e., the object with the high-
est classification score, can be extracted from a DCNN that
had only been trained on image classification. Their tech-
nique is based on computing a class activation map (CAM)
which identifies those regions in an image that lead the clas-
sification network to make a certain prediction about the
image label.

Our work goes a step further by providing a high-



resolution CAM that not only localizes all the instances of
the main object in the image and but also provides shape
information which is accurate enough to be used for image
segmentation without requiring any additional training (see
Figure 1). Opposed to the original CAM method [34], the
proposed method is able to locate the whole object body
rather than only discriminative regions which often cover
only parts of the objects. For example, the heads of ani-
mals are the most discriminative parts, and can be effec-
tively used to classify different animals. However, we aim
to discover the whole animal body rather than just its head.

Note that our method still differs from semantic image
segmentation, where every pixel in an image is classified,
and from object segmentation, where all the objects in an
image are segmented. The proposed method segments all
instances of the main object in an image only. To bridge the
gap between our method and the segmentation methods, we
apply our high resolution CAM algorithm on region pro-
posals produced by Faster-RCNN [25]. In either case, our
method is comparable to the state-of-the-art weakly super-
vised segmentation methods which are intensively evalu-
ated in Section 4. Although our method does not contain
any fine-tune training stage of the classification network, it
performs favorable in comparison to previous CAM meth-
ods as well as to state-of-the-art weakly supervised segmen-
tation methods, particularly with respect to the ability to
generalize across different datasets.

Our proposed method can be summarized in four steps:
(i) Firstly, we create two CAMs at different scales from
two different resolutions of the input image using the
GoogLeNet-GAP network [34]. (ii) We extract the shape
information from GoogLeNet-GAP using a principal com-
ponent analysis (PCA) on a particular set of response maps.
(iii) The two CAMs are upsampled by the guided filter [11]
that uses the extracted shape information. (iv) The upsam-
pled CAMs are merged to create a high-resolution class ac-
tivation map. Finally, we use the Conditional Random Field
in [32] to improve the accuracy of the shape prediction.

2. Related work

The difficulty of creating large-scale image segmentation
datasets for training deep neural networks on one hand and
the urgent need to extract localization and shape informa-
tion from images on the other hand have sparked two lines
of research, namely localization and weakly supervised seg-
mentation. CAM methods, which are a subset of localiza-
tion methods, try to localize objects by identifying pixels
that activate the class of interest. Alternatively, weakly su-
pervised segmentation techniques use different constraints
and information that is less than segmentation ground truth
to train or fine-tune DCNNs to perform segmentation tasks.
Our article falls in between these two types of approaches.

Understanding DCNNs and Class Activation Maps In
order to have a better understanding of the image classifi-
cation process, various works identify the most important
pixels used by a DCNN to classify an image. Bazzani et al.
[4] apply masks at different locations on an image and clas-
sify each result. They study the link between the positions
of the masks and the classification scores to localize objects.
Simonyan et al. [28] predict a heat map by altering the input
image. Oquab et al. [22] use a particular DCNN composed
of a fully convolutional network which outputs K images,
whereK is the number of classes, followed by a global max
pooling (GMP) and then a fully connected layer. Thanks to
the K images before the fully connected layer, Oquab et al.
localize the pixels that activate the class. Similarly, Zhou et
al. [34] proposed a DCNN architecture, illustrated in Fig-
ure 2(a), that is able to classify an image. While their archi-
tecture is similar to GoogLeNet [30], a global average pool-
ing (GAP) followed by a fully connected layer is used after
the fully convolutional network. According to [34], GAP
provides better localization results than GMP. Selvaraju et
al. [26] propose a technique to extract the discriminative
pixels based on the gradient of a DCNN. Based on CAMs
produced by Zhou et al. [34], Wei et al. proposed an adver-
sarial erasing method to iteratively expand the discrimina-
tive object regions [31]. Their mined regions are then used
to train semantic segmentation. All the above techniques
aim to localize the most important pixels used by a DCNN
to classify an image. However they can only provide very
crude estimations of the objects’ shape.

Weakly supervised object segmentation Recent works
[21, 14, 15, 23, 12, 27] have explored weakly-supervised
object segmentation. While weakly supervised learning al-
gorithms do not have access to the complete (semantic)
segmentation of the training images, they vary strongly in
the amount and detail of information of the training data.
[23, 27, 15, 21] use image class labels only, which provide
information about which objects are present in each image,
but do not contain any localization information. More infor-
mation can be exploited via bounding boxed as for instance
in [14]. [21, 12, 27] learn shape information from other
databases to improve semantic segmentation results. Other
techniques like [15, 23] add some constraints on the shape
of the objects. These constraints are used as a prior in order
to improve the segmentation results.

3. High-resolution Class Activation Maps
(rCAMs)

In this section, we present a method for producing high-
resolution class activation maps (rCAMs) that not only lo-
calize the main object in an image but also predict its shape
accurately. The proposed method is based on extracting



shapes from the GoogLeNet-GAP network [34] and using
such information together with multi-scale CAMs to in-
crease their resolution. The processes and overall structure
of the framework are illustrated in Figure 2. It consists of
extracting CAMs and shapes at two different scales, using
the shape information for an upsampling of the activation
maps, and finally fusing and refining the latter to obtain the
rCAM result. In the following subsections, we will detail
each of these steps.

3.1. Multi-scale CAMs extraction

We use the GoogLeNet-GAP network to create CAMs
[34] as the basic components for constructing rCAM. The
GoogLeNet-GAP mainly consists of convolutional layers.
After the last convolutional layer, a Global Average Pool-
ing (GAP) is performed and the GAP results are fed into
a fully connected layer for the final classification produc-
ing a 1000-dimensional vector denoted P which holds the
class probabilities for the classification result. Let us de-
note CCAM the set of response maps of the CAM layer
and wij the fully connected weight connecting the response
map i (denoted CiCAM) and the coordinate j of P . The
CAM of the class j at the position x is defined in [34] as:
CAM(x)j =

∑N
i=1 wijC

i
CAM(x), where N is the number

of response maps of the CAM layer. For an input image
I of size 224 × 224, GoogLeNet-GAP produces CAM of
size 14 × 14 that localizes the first object with the highest
classifaction probability (Figure 2(a)).

Instead of using a single scale we resize every input im-
age to images I1 of size 224× 224 and I2 of size 448× 448
by bilinear interpolation. The images I1 and I2 are feed-
forwarded to GoogLeNet-GAP to generate CAM1 of size
14 × 14 and CAM2 of size 28 × 28, respectively (Fig-
ure 2(a)). We discover that while CAM1 provides the coarse
discriminative regions for the main object, CAM2 gives us
finer discriminative regions that are sometimes overlooked
by CAM1 (see Figure 4 for an example).

The usage of the image I2 of size 448 × 448 creates a
zoom-out effect. The dominance of the discriminative re-
gions discovered in the image I1 of size 224×224 is reduced
and the finer discriminative regions have an opportunity to
be discovered in the image I2. According to our experi-
ments, CAM2 is especially useful when there are multiple
instances of the main object, for example many cows in the
image in Figure 1. On the other hand, CAM1 is very impor-
tant for the classification and localization of the main object
due to the suppression of small objects. Therefore, CAM1

and CAM2 do not compete but complement each other.

3.2. Shape extraction from GoogLeNet-GAP

Traditionally, object recognition or shape estimation
uses hand-crafted features such as SIFT [20], or descriptors
like the color, texture, or gradient of an image. The robust-

ness of a method is based on the invariance of such features
to factors such as scale, illumination, or rotation. However
in DCNNs, one does not need to define features. Instead,
the features are learnt and embedded inside DCNNs for us
to discover [10, 33].

A DCNN can be divided into two parts. The first part
involves a set of layers that form a Fully Convolutional Net-
work (FCN). Each layer in FCN contains a series of convo-
lutional operations followed by non-linear operators such
as activation and pooling. The second part consists of Fully
Connected Layers (FCL) that lead to the classification re-
sults. We focus on the FCN of GoogLeNet-GAP. The output
of each convolution kernel in the FCN is an image called re-
sponse map. Our goal is to find a set of response maps that
contain shape information and extract the shape.

The FCN of the GoogLeNet-GAP architecture is a con-
catenation of convolution and pooling layers: for an input
image I1 of size 224 × 224, it produces response maps of
sizes 112 × 112, 56 × 56, 28 × 28 and 14 × 14. By gath-
ering all these response maps into four groups according
to their sizes, we have four sets of response maps Cl with
l ∈ {112, 56, 28, 14}. Each Cl is a cubic tensor such that
Cl ∈ Rl×l×Dl , whereDl is the number of response maps of
size l× l. Therefore, Cl can be decomposed into l2 vectors
vk where vk ∈ RDl and k ∈ J1, l2K.

To condense the information of the feature maps Cl, we
apply a Principal Component Analysis (PCA) [13] to reduce
the dimension of vk fromDl to 3 by extracting the first three
components, mapping Cl = {vk}l

2

k=1 ⊂ RDl 7−→ C̃l =

{ṽk}l
2

k=1 ⊂ R3. The resulting principal components rep-
resent the response maps Cl by more compact sets C̃l and
yield a better understanding of the information contained in
each of the feature maps, see Figure 3.

In order to discover the features of the response maps, we
built a small dataset that is composed of 200 binary shape
images and performed color and texture transformations on
these shapes. We studied how the response maps change
when the color and texture information varies. According
to our numerical experiments C̃112 and C̃56 contain mainly
gradient information, C̃28 provides shape structures, and
C̃14 yields a heat map revealing the location of the main
objection. This leads us to define S1 := C̃28 to be a shape
representation of the input image I1.

By feeding an input image I2 of size 448× 448 into the
network and performing a PCA of the feature maps, one
again obtains four compact response maps whose resolution
is four times larger than the resolution of the corresponding
feature maps of I1. Again, the shape information S2 is de-
fined as the compact response map of the third layer such
that S2 ∈ R56×56×3.

We use the shape information S1 and S2 to guide the up-
sampling process in Section 3.3. Interestingly, our numer-
ical experiments indicate that the main shape information



(a) GoogLeNet-GAP with an input image size 224× 224 (b) Upsampling, Fusion and Refinement process

Figure 2. Overview of the proposed rCAM method. The input image is fed into a GoogLeNet-GAP network, [34], operating on two
different scales 224× 224 and 448× 448. They produce the class activation maps CAM1 and CAM2, the shape information maps S1 and
S1, and the class probability maps P1 and P2, respectively. In the upsampling process (middle part of (b)), S1 and S2 are used as guidance
images for a guided filter [11] that upsamples CAM1 and CAM2 to rCAM1 and rCAM2. In the fusion and refinement process (right part
of (b)), rCAM1 and rCAM2 are combined to create rCAM3 and finally, the rCAM is produced by applying a dense Conditional Random
Field (CRF) [32] to rCAM3.

C̃112 C̃56 C̃28 C̃14

(a) First principal component

(b) Second principal component

(c) third principal component

Figure 3. Illustration of the first three principal components of lay-
ers C112, C56, C28, and C14. While C112 and C56 yield gradient
information, C28 and C14 contain mostly shape information.

can be found in the first principal component on about 70%
of the images. On the other 30%, shapes can be found in
the second or third principal component. Sometimes, the
shapes can also be contrast inverted as shown in Figure 3.
In the next section, we will show how the shapes S1 and
S2 can be used to increase the resolution of CAMs in order
to provide localization and shape information in one high
resolution image.

3.3. Upsampling using guided filters

Localization results from CAMs are expressed in form
of blobs of discriminative regions (see CAM1 results in Fig-

ure 4). They may contain only parts of the objects, for ex-
ample heads of the animals, rather than the whole objects’
bodies. Besides that, the blob regions cannot depict the
shapes well. To solve these two problems, we use the shape
information recovered from GoogLeNet-GAP to guide the
process of increasing the CAMs’ resolution. The results we
achieve are rCAMs that localize the main objects as a whole
and make the objects’ shapes perceivable. The increase res-
olution process is illustrated in Figure 2(b).

The guided filter proposed in [11] is an image process-
ing operator that smoothens images while preserving sharp
edges using a guidance imageG. It relies on the assumption
that inside a local window wk that is centered at pixel xk,
there is a linear model between the guidance image G and
the output image O as defined in [11]. Hence, the guided
filter preserves edges from the guidance image while being
independent of its exact intensity values. This is an impor-
tant property because the shape information that we extract
from GoogLeNet-GAP can be contrast inverted.

However, similar to non-parametric kernel regression
[2], the size of the window wk is very important. If the win-
dow size is too big, during the regression process, a large
number of observations will be considered and it leads to
an over-smoothed estimation of the output O. If the win-
dow size is too small, the output O will depend on too few
observations and therefore, it leads to a solution with high
variance. To find the optimal values for the window sizes,
we estimate them on the shapes S1 and S2 using the vari-
ogram proposed in [7].

We assume that S1 and S2 follow a random process that
is homogeneous and has second order stationary properties.
That implies that two observations of the random process
are independent of their locations and only depend on their
spatial distance. To measure the spatial dependence of the



data we use the empirical variogram defined as follows:

γ̂(h) =
1

2|N(h)|
∑

i,j∈N(h)

(S1(xi)− S1(xj))
2 (1)

where N(h) is the set of observations pairs (i, j) such that
‖xi − xj‖ = h, which is the spatial distance between two
observations, and |N(h)| is the cardinality of this set.

This empirical variogram γ̂ is approximated by a model
function γ(h) = c1·

(
exp

(
− ||h||

2

2σ2

))
+c2, which increases

the generalization power of the empirical estimator. Three
parameters c1, c2, σ are estimated such that the variogram
function fits the empirical one. The σ parameter provides
us information about the average size of objects. So we use
σ as the size of the filter. As a result, the size of our guided
filter is adapted to each image.

In order to double the resolution of a CAM using a shape
prior S, we first double the size of the CAM by bilinear in-
terpolation. Then we apply a guided filter on the upsampled
CAM using S as the guidance image – a process which we
denote by Gf

(
U2 (CAM) , S

)
where U2 is the upscaling

bilinear interpolation with a factor of 2 andGf is the guided
filter process.

We increase the resolution of CAM1 of size 14×14 using
guided filters as follows:

˜CAM
28×28
1 = Gf

(
U2 (CAM1) , S1

)
, (2)

rCAM56×56
1 = Gf

(
U2
(

˜CAM
28×28
1

)
, S2

)
, (3)

where S1 and S2 are shapes extracted from GoogLeNet-
GAP and used as guidance images. The CAM2 extracted
from the higher resolution input image is of size 28 × 28
already and is further upsampled via

rCAM56×56
2 = Gf

(
U2 (CAM2) , S2

)
. (4)

As the result, we increase the resolution of both, CAM1 and
CAM2, to rCAM56×56

1 and rCAM56×56
2 both of which are

of size 56× 56.
As explained in Section 3.1, CAM1 and CAM2 comple-

ment each other in providing coarse and fine discriminative
regions – a property that is preserved during the proposed
upsampling, see Figure 4. Therefore, it is beneficial to com-
bine two of them in order to take the advantages of both.

3.4. Fusion and Refinement

Our goal is not only to provide high-resolution in local-
ization and shape, but also to discover all the instances of
the main object. In order to achieve the latter, we combine
rCAM1 and rCAM2 which provide localization and shape
information at different scales.

To do so, the rCAM56×56
1 and rCAM56×56

2 images de-
scribed in the previous section are upsampled to a resolu-
tion of 224 × 224 pixels using bilinear interpolation. We

fuse the resulting maps rCAM1 and rCAM2 via

rCAM3 = rCAM1 · P1(idx1) + rCAM2 · P2(idx1), (5)

where idx1 is the index of the highest classification score of
the image I1, and P1 and P2 are classification probability
results for image I1 of size 224× 224 and image I2 of size
448×448, respectively. The output is rCAM3 that combines
the advantages of both rCAM1 and rCAM2.

Finally, to refine the accuracy of the shape prediction, we
use the dense CRF implemented in [32] on rCAM3. We first
normalize rCAM3 to [0, 1] to create the probability map that
indicates the presence of the main object. We use rCAM3

and (1 − rCAM3) that represent the foreground and back-
ground probability respectively as the inputs to the CRF al-
gorithm. The inference output from the dense CRF is our
final high-resolution rCAM.

4. Evaluations

4.1. Evaluation Datasets

Our proposed method delivers results in two aspects:
main objects’ localization and shape. While many weakly-
supervised learning methods output bounding boxes for ob-
jects’ locations, CAM and rCAM produce probability maps
(heatmaps). Therefore, instead of evaluating CAM and
rCAM methods on bounding box datasets, we use three
datasets: Pascal-S [19], FT [1] and ImgSal [18]. These
datasets provide locations and shapes of salient objects
and are commonly used to evaluate salient object detec-
tion. Each dataset has its own characteristics. While the
FT dataset mainly provides a single object in each image,
Pascal-S includes multiple-object images. Pascal-S is also
a fair choice for the evaluation because many weakly su-
pervised segmentation methods are trained on Pascal VOC
2012 dataset [9]. For more diversity, ImgSal contains not
only single-object and multiple-object images, but also a
fair amount of natural landscapes. ImgSal also contains ob-
jects that do not have the same labels as in Pascal nor Ima-
geNet. It is the most challenging dataset for weakly super-
vised segmentation methods in our evaluation.

4.2. Evaluation Metrics

We use different F-measures [3] and Mean Absolute Er-
ror (MAE) [24] to analyze the performance of various CAM
methods as well as weakly supervised segmentation meth-
ods. For F-measures, we use Optimal Image Scale (OIS)
and Optimal Dataset Scale (ODS) [3]. OIS is computed
using the best threshold for the individual image while in
ODS, an optimal threshold is selected on the whole dataset.
Despite the fact that OIS and ODS use different approaches
in selecting optimal thresholds, both F-measures are calcu-
lated using the same formula in Eq. (6).



Input Image Ground truth CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM

(a) Different CAM results on a single instance of a single object

(b) Different CAM results on multiple instances of a single main object

Figure 4. Localization and shape extraction results from various CAMs

Pascal-S
Metric G-Weak CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM % increase
OIS 0.398 0.682 0.684 0.725 0.733 0.736 0.773 13.34%
ODS 0.339 0.566 0.566 0.617 0.613 0.625 0.665 17.49%
MAE 0.395 0.298 0.338 0.290 0.314 0.291 0.276 -

FT
Metric G-Weak CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM % increase
OIS 0.506 0.710 0.660 0.789 0.751 0.792 0.878 23.66%
ODS 0.448 0.643 0.568 0.714 0.660 0.714 0.803 24.88%
MAE 0.367 0.223 0.280 0.206 0.250 0.215 0.160 -

ImgSal
Metric G-Weak CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM % increase
OIS 0.388 0.509 0.502 0.577 0.574 0.597 0.623 22.40%
ODS 0.273 0.419 0.417 0.491 0.478 0.505 0.533 27.21%
MAE 0.330 0.247 0.250 0.231 0.247 0.237 0.188 -

Table 1. Results of various CAM methods on Pascal-S, FT and ImgSal datasets. G-Weak [22]. CAM1: CAM method [34] with the input
size of 224×224, CAM2: CAM method [34] with the input size of 448×448, rCAM1: high resolution of CAM1, rCAM2: high resolution
CAM2, rCAM3: combination of rCAM1 and rCAM2, rCAM: the result of applying CRF on rCAM3. The best value for OIS and ODS
measurements are 1. The ideal value for MAE is 0. The last column shows the relative improvement of rCAM in comparison to CAM1 for
the OIS, and ODS metrics.

Dataset Pascal-S FT ImgSal
Metric OIS ODS MAE OIS ODS MAE OIS ODS MAE

Binary Map
CCNN 0.530 0.530 0.231 0.276 0.276 0.176 0.169 0.169 0.099
SEC 0.638 0.638 0.208 0.553 0.553 0.150 0.399 0.399 0.123
TransferNet 0.735 0.735 0.156 0.714 0.714 0.120 0.442 0.442 0.119

Continuous Map
DCSM 0.708 0.607 0.293 0.234 0.207 0.245 0.341 0.308 0.220
DeepLab Box 0.781 0.716 0.318 0.805 0.747 0.329 0.564 0.503 0.356
rCAM 0.773 0.665 0.276 0.878 0.803 0.160 0.623 0.533 0.188
rCAM Box 0.765 0.696 0.254 0.807 0.716 0.184 0.663 0.527 0.164

Table 2. Compasison results for different weakly supervised segmentation methods: CCNN [23], SEC [15], TransferNet [12], DCSM [27],
DeepLab Box [14] and our rCAM methods.

Fβ =
(1 + β2)Precision×Recall
β2 × Precision+Recall

, (6)

where β2 = 0.3 as suggested in [1].
While F-measure metrics use the binarized heat map

with optimal thresholds, the Mean Absolute Error (MAE)
proposed in [24] measures the error of the original heat map
without thresholding to the binary ground truth. The results
are then averaged for all the images.

It is important to note that for F-measures, higher num-



Input Image GT CCNN SEC TransferNet DCSM DeepLab Box rCAM Box rCAM

(a) Results on a single instance of a single object that is labeled in Pascal dataset

Input Image GT CCNN SEC TransferNet DCSM DeepLab Box rCAM Box rCAM

(b) Results on multiple objects that are labeled in Pascal dataset

Input Image GT CCNN SEC TransferNet DCSM DeepLab Box rCAM Box rCAM

(c) Results on multiple instances of one main object that are labeled in Pascal dataset

Input Image GT CCNN SEC TransferNet DCSM DeepLab Box rCAM Box rCAM

(d) Results on multiple instances of one main object that is not labeled in Pascal dataset

Input Image GT CCNN SEC TransferNet DCSM DeepLab Box rCAM Box rCAM

(e) Results on single object that the label is neither in Pascal or ImageNet

Figure 5. Weakly supervised segmentation results from comparison methods for various scenarios

bers indicate improved results whereas with MAE measure-
ment, the smaller value is better.

4.3. Numerical results for various CAM methods

We analyze the performance of different CAM methods
on the Pascal-S, FT and ImgSal datasets. The results in
Table 1 show that the CAM method with input resolution
448 × 448 does not produce better results than CAM with
input resolution 224× 224. It can be viewed as two CAMs
at two different scales complement each other, rather than
compete with each other. At 224 × 224 resolution, CAM1

and rCAM1localize the main object at the largest size. At
448×448 resolution, CAM2 and rCAM2 can discover other
smaller instances of the main object or secondary features
locations of the main object, if there is only one instance
(Figures 1 and 4).

However, there are significant improvements between
the existing CAM methods and the high-resolution CAMs.
In more details, rCAM1 (high resolution of CAM1) is better
than CAM1 and rCAM2 (high resolution of CAM2) is bet-
ter than CAM2. By combining rCAM1 and rCAM2, the re-
sult (rCAM3) is better than any of the individual rCAM1 or
rCAM2. Finally, the evaluation results are topped by apply-
ing CRF on rCAM3 to create our final high-resolution CAM
(rCAM). On the other hand, G-Weak [22] is the method
that uses Global Max Pooling (GMP) [22]. The results in-
dicate that G-Weak yields a weaker performance than the
CAM method which uses Global Average Pooling (GAP),
and also a weaker performance than our method.



4.4. Weakly Supervised Segmentation comparison

We divide the weakly supervised segmentation methods
into two groups: the first group provides a binary segmen-
tation for each class, the second group provides continuous
values that represent the likelihood of the foreground (sim-
ilar to a probability map after normalization to the range
(0,1)). We call the first one Binary Map methods and the
latter one Continuous Map methods. To evaluate the Binary
Map methods, we set all the foreground classes to 1 and the
background to 0. As the results, OIS and ODS measure-
ments are the same for the Binary Map methods (Table 2).

The rCAM method that we describe in this paper local-
izes and extracts the shapes of instances of the main object
at different scales. To compare with weakly supervised seg-
mentation methods, we use Faster-RCNN [25] to retrieve
bounding boxes for all detected objects. We then apply
rCAM algorithm on these bounding boxes. The evaluation
for this approach is called rCAM Box.

From the numerical results in Table 2, rCAM and
rCAM Box perform better than all the competing weakly
supervised segmentation methods in term of F-measures
on FT and ImgSal datasets, on which none of the meth-
ods were trained. On the Pascal-S dataset, rCAM and
rCAM Box also outperform majority of the methods ex-
cept DeepLab Box [14] and TransferNet [12]. Similar
to rCAM Box, DeepLab Box [14] method also segments
object instances inside bounding boxes proposed by the
Faster-RCNN network [25]. The performance of rCAM
is inferior to DeepLab Box [14] on the Pascal dataset by
approximately 2-3%. It is also shown that for methods
that are trained only on image labels such as CCNN [23],
DCSM [27] and SEC [15], the accuracies are consistenly
lower on all three datasets than the accuracies of methods
that are trained using both image labels and segmentation
groundtruth such as TransferNet [12] and DeepLab Box
[14]. We also observe a significant drop in performance
from Pascal-S dataset to FT and futhermore to ImgSal, es-
pecially for CCNN [23], SEC [15] and DCSM [27]. This re-
flects the limitation of these methods to generalize beyond
the datasets they have been trained on. They are prone to
fail for classes they have not seen during training. The pro-
posed method is able to maintain a much higher accuracy
across different datasets without the need for any weakly
supervised training or fine-tuning. It is therefore much bet-
ter suited for datasets, where the training data does not need
to be highly representative for the test data.

With the MAE metric, Binary Map methods such as
CCNN [23], SEC [15]and TransferNet [12] have low error
values. In the Continuous Map group, rCAM or rCAM Box
has the lowest errors. However, we observe that the Binary
Map methods miss out more often all the segmented ob-
jects. As they cannot detect any object in an image, the
output results contain only background.

Different difficulty levels of segmentation are illustrated
in Figure 5. In the cases that objects’ labels are in the Pascal
dataset, all the methods perform relatively well even though
some of the results lack some details in the shape informa-
tion, e.g. CCNN [23], SEC [15] and DeepLab Box [14] in
Figure 5(b), or CCNN [23] and SEC [15] in Figure 5(c). If
the object label is in ImageNet [8] but not in Pascal VOC
2012 [9] dataset, an accurate segmentation becomes signif-
icantly more challenging: In Figure 5(d), DCSM [27] is un-
able to detect any object, and SEC [15] as well as Trans-
ferNet [12] show degraded shape results. In the most dif-
ficult case where the object’s label is neither in the Pascal
VOC 2012 [9] nor in the ImageNet [8] datasets, none of the
methods are able to produce reasonable results except our
proposed rCAM and rCAM Box methods (Figure 5(e)).

To understand the above results, it is important to note
that all the weakly supervised segmentation methods that
we use in our comparison are trained on the Pascal dataset.
They all do well on Pascal but the performance drops signif-
icantly when they are evaluated on different datasets such as
FT and ImgSal. Although rCAM does not need any train-
ing or fine-tuning on any dataset, its performance is already
comparable to if not better than a majority of the competing
methods on Pascal. Futhermore, rCAM is able to maintain
the top performance on both FT and ImgSal, which demon-
strates its robustness as well as the ability to generalize to a
wide variety of different types of data.

5. Conclusions

In this paper, we proposed a method for extracting the
localization and shape information of all instances of the
main object in an image. To do so, we recover the prim-
itive shape information from inside the GoogLeNet-GAP
network. This shape information is used as guidance for
the guided filter in our upsampling process to create high
resolution class activation maps (rCAMs). We ascertain the
benefits of using multi-scale rCAMs in our method, which
does not require any extra training or fine-tuning. Our eval-
uation shows that, regardless of the simplicity, our proposed
method outperforms existing CAM methods. Moreover, it
performs on-par with competing state-of-the-art weakly su-
pervised segmentation methods, while being far more ro-
bust to image data that is not well-represented by the train-
ing domain of the respective networks. Our experiments
demonstrate that high resolution class activation maps have
the potential to generalize beyond the applicability of semi
supervised segmentation methods.
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