
Realistic Lens Distortion Rendering

Martin Lambers
Computer Graphics Group

University of Siegen
Hoelderlinstrasse 3

57076 Siegen
martin.lambers@

uni-siegen.de

Hendrik Sommerhoff
Computer Graphics Group

University of Siegen
Hoelderlinstrasse 3

57076 Siegen
hendrik.sommerhoff@
student.uni-siegen.de

Andreas Kolb
Computer Graphics Group

University of Siegen
Hoelderlinstrasse 3

57076 Siegen
andreas.kolb@
uni-siegen.de

ABSTRACT
Rendering images with lens distortion that matches real cameras requires a camera model that allows calibration
of relevant parameters based on real imagery. This requirement is not fulfilled for camera models typically used in
the field of Computer Graphics.
In this paper, we present two approaches to integrate realistic lens distortions effects into any graphics pipeline.
Both approaches are based on the most widely used camera model in Computer Vision, and thus can reproduce the
behavior of real calibrated cameras.
The advantages and drawbacks of the two approaches are compared, and both are verified by recovering rendering
parameters through a calibration performed on rendered images.

Keywords
Lens distortion, Camera calibration, Camera model, OpenCV

1 INTRODUCTION
In Computer Graphics, the prevalent camera model is
the pinhole camera model, which is free of distortions
and other detrimental effects. Real world cameras, on
the other hand, use lens systems that lead to a variety
of effects not covered by the pinhole model, includ-
ing depth of field, chromatic aberration, and distortions.
This paper focusses on the latter.

In Computer Vision, distortions must be taken into ac-
count during 3D scene analysis. A variety of camera
models have been suggested to model the relevant ef-
fects; Sturm et al. [1] give an overview. The dominant
model in practical use is a polynomial model based on
the work of Heikkilä [2, 3] and Zhang [4] and is imple-
mented in the most widely used Computer Vision soft-
ware packages: OpenCV [5] and Matlab/Simulink [6].
In the following, we refer to this camera model as
the standard model. Typical Computer Vision applica-
tions estimate the distortion parameters of the standard
model for their camera system in a calibration step, and
then undistort the input images accordingly before us-
ing them in further processing stages.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

For a variety of applications, including analysis-by-
synthesis techniques [7], sensor simulation [8], and spe-
cial effects in films [9], it is useful to apply the reverse
process, i.e. to synthesize images that exhibit realis-
tic distortions by applying a camera model. Using the
standard model for this purpose has the advantage that
model parameters of existing calibrated cameras can be
used directly, with immediate practical benefit to all ap-
plication areas mentioned above.
In this paper, we present and compare two ways of inte-
grating realistic distortions based on the standard cam-
era model into graphics pipelines. One is based on
preprocessing the geometry, and the other is based on
postprocessing generated images. We show that both
methods have unique advantages and limitations, and
the choice of method therefore depends on the applica-
tion. We verify both approaches by showing that stan-
dard model calibration applied to synthesized images
recovers the distortion parameters with high accuracy.

2 RELATED WORK
In Computer Graphics, camera models that are more
realistic than the pinhole model are typically based on
a geometric description of the lens system that is then
integrated into ray tracing pipelines [10, 11]. This ap-
proach is of limited use if the goal is to render im-
ages that match the characteristics of an existing cam-
era, as suitable parameters cannot be derived automat-
ically. Furthermore, this approach excludes rasteriza-
tion pipelines, which is problematic for applications
that benefit from fast image generation.



In contrast, using a Computer Vision camera model al-
lows to apply parameters obtained by calibrating a real
camera and, as shown in Sec. 3, can be done in any
graphics pipeline.
Sturm et al. [1] give an overview of camera models in
Computer Vision. Most models account for radial dis-
tortion (e.g. barrel and pincushion distortion, caused
by stronger bending of light rays near the edges of a
lens than at its optical center) and tangential distortion
(caused by imperfect parallelism between lens and im-
age plane). Some also account for thin prism distortion
(caused by a slightly decentered lens, modeled via an
oriented thin prism in front of a perfectly centered lens),
and tilted sensor distortion (caused by a rotation of the
image plane around the optical axis).
The complete formulas for the standard model [5] com-
pute distorted pixel coordinates from undistorted pixel
coordinates and use parameters k1, . . . ,k6 for radial dis-
tortion, p1 p2 for tangential distortion, s1, . . . ,s4 for thin
prism distortion, and τ1,τ2 for tilted sensor distortion.
In practice, thin prism distortion and tilted sensor
distortion are usually ignored, and radial distortion is
limited to two or at maximum three parameters (the
others are assumed to be zero). This is documented
by the fact that the calibration functions of OpenCV1

and Matlab/Simulink2 estimate only the parameters
k1,k2, p1, p2 and optionally k3 by default.
In the following, we focus on the standard camera
model of Computer Vision, and apply it to arbitrary
rendering pipelines via either geometry preprocessing
or image postprocessing.

3 METHOD
We first summarize the standard model in Sec. 3.1, fo-
cussing on the aspects relevant for this paper and incor-
porating its intrinsic camera parameters into the projec-
tion matrix of a pinhole camera model. On this basis,
simulating lens distortion can be done in one of two
ways:

• By preprocessing geometry. In this approach, each
vertex of the input geometry is manipulated such
that its position in image space after rendering cor-
responds to a distorted image.

• By postprocessing images. In this approach, an
undistorted image is rendered based on the pinhole
camera model, and distorted in a postprocessing step
based on the standard model.

These approaches are described in detail in the Sec. 3.2
and Sec. 3.3.

1 https://docs.opencv.org/3.4.0/dc/dbb/
tutorial_py_calibration.html

2 https://mathworks.com/help/vision/ug/
camera-calibration.html

1 vec4 clipCoord = P * position;
2 vec2 ndcCoord = clipCoord.xy / clipCoord.w;
3 vec2 pixelCoord = vec2(
4 (ndcCoord.x * 0.5 + 0.5) * w,
5 (0.5 - ndcCoord.y * 0.5) * h);
6 // apply the standard model to pixelCoord
7 ndcCoord.x = (pixelCoord.x / w) * 2.0 - 1.0;
8 ndcCoord.y = 1.0 - (pixelCoord.y / h) * 2.0;
9 clipCoord.xy = ndcCoord * clipCoord.w;

Algorithm 1: GLSL code fragment for applying the
standard model in the vertex shader.

3.1 The Standard Model
The standard model, reduced to the part that is rele-
vant in this discussion, has the following parameters:
the camera intrinsic parameters, consisting of the prin-
cipal point cx,cy and the focal lengths fx, fy (both in
pixel units), the radial distortion parameters k1,k2, and
the tangential distortion parameters p1, p2. The model
computes distorted pixel coordinates u,v from undis-
torted pixel coordinates x,y by first computing normal-
ized image coordinates s, t with distance r to the prin-
cipal point, applying the distortion, and then reverting
the normalization [5]:

s =
x− cx

fx

t =
y− cy

fy

r2 = s2 + t2

d = 1+ k1r2 + k2r4

u = (sd +(2p1st + p2(r2 +2s2))) fx + cx

v = (td +(p1(r2 +2t2)+2p2st)) fy + cy

(1)

Here, the undistorted pixel coordinates x,y are equiv-
alent to pixel coordinates generated with the pinhole
camera model of a standard graphics pipeline when the
camera intrinsic parameters cx,cy, fx, fy are accounted
for in the projection matrix. This matrix is typically de-
fined by a viewing frustum given by the clipping plane
coordinates l,r,b, t for the left, right, bottom, and top
plane. These values have to be multiplied by the near
plane value n; here we assume n = 1 for simplicity.
Given the image size w×h, suitable clipping plane co-
ordinates can be computed from the camera intrinsic
parameters as follows:

l =−cx +0.5
fx

r =
w
fx
+ l

b =−
cy +0.5

fy

t =
h
fy
+b



Using this frustum to define the projection matrix in a
standard graphics pipeline accounts for the camera in-
trinsic parameters of the standard model. The remain-
ing problem is to integrate the lens distortion param-
eters k1,k2, p1, p2. This is discussed in the following
sections.

3.2 Preprocessing Geometry
In this approach, each input vertex is manipulated such
that its image space coordinates match the distorted co-
ordinates of the standard model.

In a standard graphics pipeline, this manipulation is
typically done in the vertex shader. Since the standard
model operates on pixel coordinates, we first apply the
projection matrix from Sec. 3.1 to each vertex, result-
ing in clip coordinates, and then divide by the homo-
geneous coordinate to get normalized device coordi-
nates (NDC). By applying the viewport transformation,
these are transformed to window coordinates, which are
equivalent to pixel coordinates in the standard model.
After modifying the x and y components of the window
coordinates to account for lens distortion according to
Eq. 1, we transform back to clip coordinates. See Alg. 1
for an OpenGL vertex shader code fragment.

This approach has two limitations.

First, modifying clip coordinates in this way means
that a fundamental assumption of the graphics pipeline,
namely that straight lines in model space map to straight
lines in image space, is no longer fulfilled. This leads
to errors. A similar problem occurs in graphics applica-
tions that project onto non-planar surfaces, e.g. shadow
maps [12] and dynamic environment maps [13] that aim
to reduce memory usage. There, the errors are consid-
ered acceptable if the tessellation of the input geometry
is fine enough such that triangle edges in image space
are short. Whether this condition is met in our case de-
pends on the application.

Second, our vertex modification takes place before clip-
ping, and therefore includes vertices that lie outside the
domain of the standard model. Depending on the distor-
tion parameters, transforming these vertices may place
them into image space, resulting in invalid triangles that
ruin the rendering result. To avoid this problem, we dis-
card triangles that contain at least one vertex outside of
the view frustum. A tolerance parameter δ can be ap-
plied during this test to avoid holes in the final image
caused by triangles that are partly inside the frustum:
a vertex is discarded if its unmodified NDC xy coordi-
nates lie outside [−1−δ ,1+δ ]2. Since the preprocess-
ing approach requires a finely detailed geometry any-
way, simply using δ = 0.1 should work fine. We used
this value for all of our tests.

For certain types of distortion, mainly barrel distortion
(see Fig. 1), we must additionally account for vertices

that lie outside of the pinhole camera frustum but may
be mapped into image space nonetheless. This is done
by adding a distortion-dependent value D to the param-
eter δ . Given the inverse of the standard model (see
Sec. 3.3 for details), we can determine a lower bound
for D automatically by undistorting the distorted im-
age space corner coordinates (0,0),(w,0),(w,h),(0,h),
transforming them to NDC coordinates, and setting D
to the maximum of the absolute value of each coordi-
nate, minus one.

3.3 Postprocessing Images
In this approach, the scene is first rendered into
an undistorted image using an unmodified graphics
pipeline based on a pinhole camera with the projection
matrix from Sec. 3.1. The result is then transformed
into a distorted image by applying the standard model
in a postprocessing step, e.g. using a fragment shader.

This postprocessing step requires the computation of
undistorted pixel coordinates (x,y) from distorted pixel
coordinates (u,v), i.e. the inverse of Eq. 1. This inver-
sion is not a trivial problem; several approaches exist,
but none supports the full set of parameters of the orig-
inal standard model. For example, Drap and Lefèvre
propose an exact inversion, but for radial distortion
only [14].

We apply ideas by Heikkilä [3] to invert Eq. 1 using
an approximation based on Taylor series. Note that his
camera model differs from the standard model; in par-
ticular, it computes undistorted pixel coordinates from
distorted pixel coordinates. Nevertheless, his inversion
process is still applicable. The resulting formulas sup-
port radial distortion parameters k1,k2 and tangential
distortion parameters p1, p2, which is sufficient in prac-
tice:

s =
u− cx

fx

t =
v− cy

fy

r2 = s2 + t2

d1 = k1r2 + k2r4

d2 =
1

4k1r2 +6k2r4 +8p1t +8p2s+1

x = (s−d2(d1s+2p1st + p2(r2 +2s2))) fx + cx

y = (t −d2(d1t + p1(r2 +2t2)+2p2st)) fy + cy

(2)

Note that the postprocessing step can only fill areas
in the distorted image for which information exists in
the undistorted image. For certain types of distortion,
mainly barrel distortion (see Fig. 1), this means that
some areas of the result remain unfilled. This can only
be alleviated by using both an enlarged frustum and
an increased resolution when rendering the undistorted



Preprocessing geometry Postprocessing images
Distortion model completeness full limited to radial and tangential
Prerequisites finely detailed geometry none
Result completeness full may have unfilled areas
Rendered data types all limited to interpolatable, relocatable data
Complexity geometry-dependent resolution-dependent

Table 1: Comparison of the pre- and postprocessing approaches to lens distortion rendering based on the standard
model. See Sec. 3.4 for details.

image. Note that while it is possible to derive suit-
able frustum and resolution parameters by computing
undistorted coordinates for the distorted image space
corner coordinates (0,0),(w,0),(w,h),(0,h), similar to
method described for the preprocessing approach, we
did not do so in our tests for simplicity.

3.4 Discussion
In this section, we discuss several aspects of the prepro-
cessing and postprocessing approaches, summarized in
Tab. 1.

Distortion model completeness: In the preprocessing
approach, we apply the forward standard model and
thus can use the full formulas unchanged, i.e. with sup-
port for all parameters, including thin prism and tilted
sensor distortion if relevant. The postprocessing ap-
proach requires the inverse model, and no inversion is
known that accounts for all parameters. It is therefore
limited to radial and tangential distortion with param-
eters k1,k2, p1, p2, but this should be sufficient for the
majority of applications.

Prerequisites: Applying the preprocessing approach re-
quires finely tessellated geometry to keep errors small.
Not all applications may be able to make such guaran-
tees. The postprocessing approach does not have this
limitation.

Result completeness: While the preprocessing ap-
proach can map geometry outside of the pinhole
camera view frustum into the distorted image, such
information is not available to the postprocessing
approach unless an enlarged frustum and increased
resolution are used for the undistorted image. See
Fig. 1.

Rendered data types: The postprocessing approach will
usually map undistorted pixels with interpolation to the
distorted image. This is fine e.g. for RGB images, but
may break for other kinds of data that special applica-
tions may render into images, e.g. object IDs or 2D
pixel flow. In these cases, only the preprocessing ap-
proach can be applied.

Computational complexity: The complexity of the post-
processing approach depends on the number of vertices
in the input geometry, while the complexity of the post-
processing approach depends on the number of output

pixels. While the preprocessing approach can be in-
tegrated directly into any pipeline, the postprocessing
approach requires an additional render pass.

4 RESULTS
We implemented both the preprocessing and the post-
processing approach in a standard OpenGL rendering
pipeline. To verify that our implementation produces
results that match the OpenCV/Matlab implementation
of the standard model, we varied the model parame-
ters cx,cy, fx, fy,k1,k2, p1, p2, then rendered a set of 17
images of size 800× 600 for each parameter set, con-
taining the standard OpenCV checkerboard calibration
pattern in various 3D positions and orientations, and
then used the OpenCV calibrate.py script to es-
timate the model parameters from the rendered images.
Note that OpenCV also supports a circle grid calibra-
tion pattern, but we chose to use the more widely used
checkerboard pattern.

In most cases, the original parameters were recovered
with high accuracy, even though the rendered set of
images was of low quality for calibration purposes.
The average recovery error was less than 1 % for
cx,cy, fx, fy,k2, p1, p2. Interestingly, for k1 the error
was significantly larger, however this did not cause
noticeable errors in the undistorted images that were
produced for verification purposes. For a few sets,
calibration failed, mostly caused by parts of the
checkerboard pattern not being visible in some images.

Fig. 2 shows a visual verification: first, an undistorted
image is rendered, then a distorted one with a specific
set of parameters, and this distorted image is finally
undistorted using OpenCV with the same parameters.
The first an last image show only minimal differences.

5 CONCLUSION
We presented two methods to accurately render images
that match the characteristics of real cameras regard-
ing implicit parameters and lens distortion. Both meth-
ods are based on the most widely used camera model
in Computer Vision, and can be integrated into any ren-
dering pipeline.

We highlighted the specific advantages and drawbacks
of each approach to help implementers pick the right
approach for a given application.



Figure 1: Effects of barrel distortion (k1 =−0.11,k2 =
0, p1 = 0, p2 = 0). From top to bottom: undistorted im-
age, distorted image from preprocessing geometry, and
distorted image from postprocessing the undistorted
image.

Figure 2: From top to bottom: undistorted image of size
800,600 rendered with intrinsic parameters cx = 399.5,
cy = 299.5, fx = fy = 400, distorted image rendered
with parameters k1 = −0.05, k2 = 0.01, p1 = 0.03,
p2 = −0.01, and undistorted image produced from the
distorted image by OpenCV using the same parameters.



6 ACKNOWLEDGMENTS
The work is partially funded by the German Research
Foundation (DFG), grants Ko-2960-12/1 and Ko-2960-
13/1.

The scene displayed in Fig. 1 and Fig. 2 is the Rungholt
scene from McGuire graphics data [15].

7 REFERENCES
[1] P. Sturm, S. Ramalingam, S. Gasparini, and

J. Barreto. Camera Models and Fundamental
Concepts Used in Geometric Computer Vision.
Now Foundations and Trends, 2011.

[2] J. Heikkilä and O. Silvén. A four-step camera cal-
ibration procedure with implicit image correction.
In Proc. IEEE Comp. Soc. Conf. Computer Vision
and Pattern Recognition, pages 1106–1112, Jun
1997.

[3] J. Heikkilä. Geometric camera calibration us-
ing circular control points. IEEE Trans. Pattern
Analysis and Machine Intelligence, 22(10):1066–
1077, Oct 2000.

[4] Z. Zhang. A flexible new technique for camera
calibration. IEEE Trans. Pattern Analysis and
Machine Intelligence, 22(11):1330–1334, Nov
2000.

[5] OpenCV contributors. OpenCV cam-
era model description. https://
docs.opencv.org/3.4.0/da/d54/
group__imgproc__transform.html#
ga7dfb72c9cf9780a347fbe3d1c47e5d5a.
Accessed 2018-03-14.

[6] Mathworks. Matlab / Simulink camera pa-
rameters. https://www.mathworks.com/
help/vision/ref/cameraparameters.
html. Accessed 2018-03-14.

[7] E. Brachmann, A. Krull, F. Michel, S. Gumhold,
J. Shotton, and C. Rother. Learning 6D object
pose estimation using 3D object coordinates.
In Proc. European Conf. on Computer Vision
(ECCV), pages 536–551, 2014.

[8] M. Lambers, S. Hoberg, and A. Kolb. Simu-
lation of time-of-flight sensors for evaluation
of chip layout variants. IEEE Sensors Journal,
15(7):4019–4026, July 2015.

[9] D. Roble. Vision in film and special effects.
ACM SIGGRAPH Comput. Graph. Newsletter,
33(4):58–60, November 1999.

[10] C. Kolb, D. Mitchell, and P. Hanrahan. A re-
alistic camera model for computer graphics. In
Proc. Conf. on Computer Graphics and Interac-
tive Techniques (SIGGRAPH), pages 317–324,
1995.

[11] J. Wu, C. Zheng, X. Hu, and C. Li. An accurate
and practical camera lens model for rendering
realistic lens effects. In Int. Conf. on Computer-
Aided Design and Computer Graphics, pages 63–
70, September 2011.

[12] D. Scherzer, M. Wimmer, and W. Purgathofer. A
survey of real-time hard shadow mapping meth-
ods. Computer Graphics Forum, 30(1):169–186,
2011.

[13] T. Y. Ho, L. Wan, C. S. Leung, P. M. Lam, and
T. T. Wong. Unicube for dynamic environment
mapping. IEEE Trans. Visualization and Com-
puter Graphics (TVCG), 17(1):51–63, Jan 2011.

[14] P. Drap and J. Lefèvre. An exact formula for cal-
culating inverse radial lens distortions. MDPI
Sensors, 16(6), 2016.

[15] Morgan McGuire. Computer graphics archive.
https://casual-effects.com/data,
July 2017.


