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Abstract—The advent of compressive sensing (CS) theory
opened the possibility of linking the sensing effort, that is,
the volume of data being produced by the sensor, to the
amount of information it conveys, rather than to the desired
sensor bandwidth, as traditional sampling theory suggests.
Consequently, in the typical CS scenario, one ends up with
a set of few measurements and the challenge is to recover a
signal whose dimensionality is much higher than the number of
measurements, typically under the assumption of being sparse.
One faces, therefore, a constrained l0 minimization problem.
Despite being ubiquitous in nature, finding the solution with
lowest l0 norm is known to be NP-hard. In this work we
propose mimicking the nature to approach a solution. More
specifically, we design a genetic algorithm (GA) that, despite
being based on the rules of evolution of biological systems, is
fully tailored to our specific problem. Adopting the terminology
from genetics, our chromosomes are representations of different
support configurations, with an associated restricted-support
temporal solution. The fitness of each chromosome is measured
in terms of reprojection error of the associated solution. We
deal with the sparsity requirement by means of a generalized
crossover strategy based on support set overlap, rather than
explicitly adding an l0 or l1 regularizer to the fitness function.
We show that the proposed algorithm outperforms the generic
multiobjective GA NSGA-II for solving the CS constrained l0
minimization in terms of l2 reconstruction error, at no cost in
execution time.

I. INTRODUCTION

Most signal acquisition devices sample the input signals

at the Nyquist rate, supposing that they have a bandlimited

frequency spectrum. Frequently, the quality of a sensor

is measured by its bandwidth, which is desired to be as

high as possible. This translates into large Nyquist rates,

which in turn lead to huge data streams. Consequently, the

data needs to be compressed right after being sensed. A

question that naturally arises at this point is whether it is

possible to sense in a compressed fashion, that is, acquire

less but more informative data, rather than compressing

right after sensing. A positive answer has been provided by

the groundbreaking theory of compressive (or compressed)

sensing, which shows that most real signals can be recovered

from a reduced number of measurements, often much lower

than that suggested by the Shannon sampling theorem. The

reason behind is that the minimum dimensionality in which

a signal can be embedded at no information loss relates

to the information content of the signal, rather than to its

ambient dimensionality. Nevertheless, this does not imply

that the original signal can be trivially recovered from the

measurements, since this means solving an underdetermined

problem. In order to recover the signal one needs to exploit

the bounded information constraint, which is typically ex-

pressed as an l0 minimization of the signal representation

in some basis where it admits a sparse representation.

The relatively large amount of work on methods for

recovering the underlying sparse signal from the compressed

measurements leads to the question whether the perspective

we use to approach the problem is the right one. The concept

of sparse or minimal complexity modeling is a very natural

one and, in fact, economy of resources is ubiquitous in the

nature, being this principle of economy often used as a gui-

deline for explaining nature in science. Such is the direction

pointed by the famous Occam’s razor, which states that it

is futile to do with more [resources] what can be done with

fewer. At the end of the day, such beautiful formulations

translate into massively underdetermined problems, where

the simplest solution can very hardly or not at all be appro-

ached due to the large ambient dimensionality. Still, nature

seems to be good at approaching such optimal solutions. In

this work we propose using the nature to fight the nature,

in other words, using a nature-inspired solver scheme for

solving a nature-inspired problem. More specifically, the

structure of our algorithm is based on the concept of a

genetic algorithm (GA), which, in turn, imitates the process

of natural adaptation present in biological systems.

Despite we build upon the concept of GAs, our algorithm

is tailored to solve the aforementioned constrained l0 mini-

mization in a CS framework. We have tried, nevertheless,

to keep the algorithm formulation as general as possible,

so that parameters affecting the way the new generation is

obtained from the previous can be customized. This may

allow accelerating the algorithm by adapting its behavior to

the signals we expect to be dealing with. Complementary,

we try to rely as less as possible on random and, in fact, we

propose a deterministic scheme for selecting the pairings be-

tween individuals that comes from error correcting coding.

As a result, the proposed algorithm is able to outperform

generic multiobjective GAs for the specific task of linearly-

constrained l0 minimization at an equivalent cost in terms

of population size and execution time.
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II. RELATED WORK

The works we present here can be classified in two main

groups, according to whether a GA is directly used as

recovery algorithm for solving Eq. 4 or, differently, is used

only as secondary algorithm for adjusting some parameters

of the CS framework. The latter are only marginally related

to our work.

To this second group belong [1]–[3], where a GA is used

to retrieve the optimal number of measurements, m, that is,

for sensing matrix design, while conventional CS recovery

algorithms are used for sparse recovery. More specifically,

OMP is used in [1], ROMP in [2] and CoSaMP in [3]. A

concern on these works is the fact that, if measurements

for the largest value of m considered by the GA during

optimization are indeed available, then one should make

use of all these measurements, instead of trying to find

out a posteriori whether acquiring a lower number of

measurements would have been sufficient.

Another example of using a GA for parameter optimiza-

tion in CS is [4], where Total Variation (TV) minimization

is used to recover an image from compressed measurements

acquired with a single-pixel camera setup. The GA is

implemented in an outer optimization loop and its aim

is optimizing the free parameters of the TV-minimization

model. A weakness of this work is the fact that the authors

make explicit use of the real image, which is, in principle,

unknown, to evaluate the error term of their multiobjective

fitness function.

Representatives of the group of works actually solving

Eq. 4 by means of a GA are [5], [6], where the nondomina-

ted sorting GA named NSGA-II [7] is used as multiobjective

GA. The fitness function is composed by two terms, namely,

the l0 norm of the solution and its reprojection error. NSGA-

II returns several optimal (nondominated) solutions along

the Pareto front. The authors choose the median solution,

hoping for a tradeoff between sparsity and reconstruction

error.

The signal reconstruction algorithm proposed in [8] com-

bines the GA with bacterial foraging optimization (BFO)

and is able to find the global optimum to multimodal

optimization problems such as that in Eq. 4. Similarly to

our approach, they also define an elite, which gets directly

transferred to the next generation. The performance of the

algorithm is compared to that of OMP. Unfortunately, no

details are provided on how the multimodality of the fitness

function is handled. Instead of that, the authors affirm that

the constrained l0 minimization can be reduced to a simple

l2 reprojection error minimization if all the individuals of

the initial population have the same sparsity as the solution.

For this to hold, not only the sparsity should be the same,

but also the sparse support and, furthermore, one should

take care that the sparse support gets preserved from one

generation to the next. Additionally, if the signal support was

known beforehand, the constrained least squares solution

can be computed in a closed form by means of the Moore-

Penrose pseudoinverse and no iterative method is needed.

In [9] the authors also claim using a GA to solve

Eq. 4. The algorithm follows the typical structure of fitness

evaluation, crossover and mutation, but no further details are

provided. Surprisingly, the fitness function is not multiob-

jective, but the lp reprojection error for p ∈ {0, 0.5, 1, 2}.

This does not enforce sparsity of the solution and remains

unclear how the sparsest solution is achieved. The hybrid
GA of [10] includes a step of modified parallel coordinate

descent (PCD) to prevent the algorithm from getting stuck.

The algorithm solves Eq. 4 for known s by means of an

explicit s-thresholding after crossover.

III. THE COMPRESSIVE SENSING SCENARIO

The mathematical theory of compressive sensing (CS)

[11], [12] states that real-world signals can often be reco-

vered from much fewer measurements than those suggested

by the Shannon sampling theorem. The Shannon sampling

theorem states that a continuous signal is completely deter-

mined by a number of equidistant samples acquired at a rate

that is twice the maximum frequency contained in the signal

(Nyquist rate). Instead, CS theory requires the signal to be

sparse in some basis or tight frame. If this is the case and the

sensing scheme satisfy some additional requirements, then

the signal can be exactly recovered from few non-adaptive

measurements. Let �x ∈ C
n be the discrete signal we want to

recover, in its sparse representation. The so-called l0 norm

of �x is defined as:

‖�x‖0 := lim
p→0

‖�x‖pp = | supp (�x)| (1)

that is, the cardinality of the support of �x, and �x is called

an s-sparse signal if:

‖�x‖0 ≤ s (2)

that is, if �x has, at maximum, s non-zero elements. Now

the challenge is to reconstruct �x from a reduced number

of linear measurements m � n. Thus, the classic CS

measurement model is an underdetermined linear system of

the form:

�y = AAA�x (3)

where AAA ∈ C
m×n denotes the measurement matrix, which

explains how the vector of measurements �y ∈ C
m relates to

the signal �x and may be the composition of the actual sen-
sing matrix, modeling the sensing process, and a dictionary,

modeling the sparsifying transformation. Ideally, we would

like to find the sparsest �x satisfying Eq. 3, that is, we look

for the solution to the following constrained l0 minimization:

�̂x = argmin
�x∈Cn

‖�x‖0 subject to �y = AAA�x (4)

Unfortunately, finding a solution to Eq. 4 is, in general,

NP-hard.
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IV. A GENETIC ALGORITHM FOR COMPRESSIVE

SENSING SPARSE RECOVERY

In the following we present our GA for solving the con-

strained l0 minimization introduced in Eq. 4. Our approach

shares with GAs the typical sequential structure of mutation,

selection of the fittest individuals for breeding, according to

some fitness function, and crossover to generate new indivi-

duals for the next generation (see [13] for details). In Fig. 1

we provide a block diagram of the algorithm. Operations or

processes are depicted as rectangles with rounded vertices

and sets of individuals as rectangles with sharp vertices. The

individuals of our population are chromosomes (adopting

the nomenclature from genetics) with n binary genes each,

that is, each gene has two alleles, leading to 2n different

possible genetic structures or genotypes. Each chromosome

of the population represents a configuration for the signal

support and we will denote with Ω
(k)
i the ith chromosome

of the kth generation.

A. Initial Population

We know from null space considerations that the sparsity

s should not exceed m/2. Therefore, any initial population

P(0) has to be such that:

P(0) =
{
Ω

(0)
i

}nind

i=1
, 1 ≤

∣∣∣Ω(0)
i

∣∣∣ ≤ �m/2�∀i (5)

where nind is the number of individuals or size of P(0). For

each chromosome, the number of nonzero genes, i. e., the

cardinality of the support set, s
(0)
i =

∣∣∣Ω(0)
i

∣∣∣, is drawn from

an uniform probability distribution between 1 and �m/2�.

Note the possibility of integrating a priori knowledge on s
by means of custom distributions. Despite the sparsities are

drawn from some probability distribution, the s
(0)
i indices

belonging to the ith support set are not randomly selected.

We make use of the least squares solution to the underde-

termined system in Eq. 3 to select the signal support by

thresholding, namely

Ω
(0)
i = supp

(
τ
s
(0)
i

(�xLS)
)
, ∀1 ≤ i ≤ nind

�xLS = AAA†�y
(6)

where τ
s
(0)
i
(·) denotes s

(0)
i -thresholding and AAA† the Moore-

Penrose pseudoinverse of A. The restriction to a support set

of cardinality lower than m implies that each chromosome

uniquely defines a temporal solution to Eq. 3. For any

arbitrary population at generation k, the associated temporal

solutions are given by the Moore-Penrose pseudoinverse of

the corresponding support-restricted measurement matrix,

that is:

�x
(k)
i ∈ C

n with

⎧⎪⎨
⎪⎩
�x
(k)
Ωi

=
(
�x
(k)
i

)
Ω

(k)
i

= AAA†
Ω

(k)
i

�y

�x
(k)

Ω̄i
=

(
�x
(k)
i

)
Ω̄

(k)
i

= �0 ∈ C
n−s

(k)
i

(7)

where the vector and matrix subscripting denotes restriction

to the set denoted by the subscript. Since Ω
(k)
i is uniquely

associated to �x
(k)
i the abuse of notation proposed in the left

equalities is legit.

B. Mutation

The process of mutation applied over some population

P(k) means that the chromosomes undergo stochastic chan-

ges in the values of its genes, according to some probability

distribution. In our case, we define the probability that any
gene of the chromosome undergoes any mutation as p

(k)
mut =

P
(
Ω

(k)′
i 	= Ω

(k)
i

)
, ∀i, where the prime here denotes the

same set after mutation. We use a different (higher) mutation

probability for the first iteration and the same (pmut) for

all the following, i. e., p
(0)
mut > p

(k)
mut = pmut, ∀k ≥ 1.

We distribute the aggregate mutation probability uniformly

between a subset of genes allowed to mutate. We only allow

mutation of genes corresponding to non-support elements,

yielding

p
(k)
mut gen,i = 1− n−s

(k)
i

√
(1− pmut). (8)

C. The Fitness Function

Typically, the fitness function in a GA is a function that

takes as an input a population individual or chromosome

and outputs a measure of how fit it is, i. e., how good it

is according to some evaluation criterion. In other words,

the fitness function is the function for which we seek an

optimizer. Provided that we aim to solve Eq. 4, one would

expect a multiobjective fitness function, in which both the

l0 norm of the solution and some data fidelity term are

to be simultaneously minimized, as in [5], [6]. Differently,

our chromosomes are temporal support sets and the gene

mutations are, in practice, binary flips. This allows us easing

the search for a solution and adopting the reprojection

error as single-objective fitness function. We rely on an

appropriate initialization and crossover strategy to keep the

temporal sparsities as low as possible, still seeking for the

solution that minimizes the reprojection error. Therefore, our

fitness function is

f
(
Ω

(k)
i

)
= ‖AAA�x(k)

i − �y‖2 = ‖AAA
Ω

(k)
i

�x
(k)
Ωi

− �y‖2
= ‖PPP⊥

Ω
(k)
i

�y‖2
PPP⊥

Ω
(k)
i

= III −AAA
Ω

(k)
i
AAA†

Ω
(k)
i

(9)

which is equivalent to the data fidelity term of the mul-

tiobjective functions in [5], [6] and in [8]. PPP⊥
Ω

(k)
i

is an

orthogonal projector, which projects �y onto the subspace

that is orthogonal to that spanned by the columns of AAA

indexed by Ω
(k)
i .

D. The Selection Scheme

Two main groups of individuals are selected from the

population using Eq. 9. The most restrictive group is an

elite of very few individuals exhibiting the highest fitness,

which is denoted P
(k)
elite at generation k and is of size∣∣∣P(k)

elite

∣∣∣ = nelite = kelitenind. P
(k)
elite is directly transferred
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Fig. 1: Block diagram of the proposed genetic algorithm. Population’s chromosomes are different plausible signal support

configurations. Mutations mean changes in the corresponding signal support. The reprojection error of the least squares

solution restricted to a given support configuration is adopted as fitness function. Pairings between parents are established

according to an LDPC matrix. Generations of chromosomes succeed one another until some stopping criterion is met, and

the fittest individual is used to generate a solution.

to the next generation. The other group is constituted by

the individuals that will breed the next generation. This

group, denoted P
(k)
breed, is also created selecting the fittest

individuals and is of size
∣∣∣P(k)

breed

∣∣∣ = nbreed = kbreednind,

with 0 < kelite � kbreed < 1. Clearly, P
(k)
elite ⊂ P

(k)
breed ⊂

P(k). Eventually, a third subset of the population may

become necessary in order to prevent the population size

from shrinking in each new generation: the contingency
population, P

(k)
cont ⊂ P(k) \ P

(k)
elite. In the usual case that

nchild ≥ nind − nelite, then P
(k)
cont = ∅.

E. Crossover
We call crossover the process of generating a population

of children, P
(k)
child, of size

∣∣∣P(k)
child

∣∣∣ = nchild from the

previously-selected breeding population P
(k)
breed. Differently

from the original concept of crossover [13], in which

randomness plays a major role and pairings are binary,

we propose a more general crossover framework in which

pairings are deterministic and of custom size. The number

of children per pairing is an adjustable parameter of this

deterministic scheme. Let’s analyze separately the two tasks

of our crossover framework, namely, establishing pairings

and generating children from the pairings.
The pairing scheme refers to the way nbreed selected

individuals are implied in npair pairing events. We contem-

plate here the adjustable parameter d ≥ 2, which is the

number of parents required per pairing. A further novelty

is that the selection of the d parents implied in each

pairing is not random, but done according to a Low-Density

Parity-Check (LDPC) code [14]. We denote the number

of rows and columns of the LDPC matrix as ncheck and

nsym, respectively, with ncheck < nsym. In a Tanner graph

representation, nsym is the number of symbol nodes and

ncheck is the number of check nodes in the bipartite graph.

Each column of the LDPC matrix contains a small number

of ones, ds, and each row contains dc ones, also low. In our

case, and in order to account for any desired combination

of nbreed and npair, we set

nsym = max (nbreed, npair)

ncheck = min (nbreed, npair)

ds, dc

{
ds =

nbreed

npair
d, dc = d if nbreed > npair

ds = d, dc =
npair

nbreed
d otherwise

(10)

and each one in the matrix means that a specific individual

of P
(k)
breed is taking part in a specific pairing. We adopt the

Progressive Edge-Growth method [15] for constructing the

LDPC matrix with the parameter values of Eq. 10.

The next step is defining how children are generated

from the d parents at each pairing. We propose generating

children by levels of support set overlap (shortened SSO).

The number of SSO levels, 1 ≤ kSSO ≤ d−1, is equivalent

to the number of children that will be generated per pairing.

For each SSO level, l, the new chromosome (support set) of

the pairing p is generated from the d parent chromosomes

as follows

Ω
(k)
p,l =

{
j |

∣∣∣∣∣
d⋃

q=1

j ∩ Ω
(k)
ip,q

∣∣∣∣∣ ≥ l

}
, 1 ≤ l ≤ kSSO, (11)

where ip,q is the index of the qth parent chromosome

implied in the pairing p. Therefore, the total number of

children is nchild = kSSOnpair. In case nchild < nind−nelite,

a contingency population of size nind − nelite − nchild is

added to the children to avoid population shrinkage.
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F. New Generation and Stopping Criterion

The temporal population composed by the union of

P
(k)
child and P

(k)
cont undergoes mutation and posterior fitness

evaluation, as initially done with P(0). The nind − nelite

fittest individuals of this (mutated) temporal population are

selected as final offspring, P
(k)
off . Then the next generation

is obtained as

P(k+1) = P
(k)
off ∪P

(k)
elite. (12)

The fittest chromosome is selected as prospective solu-

tion:

�̂x(k) = �x
(k)
ik

ik = argmin
i

∥∥∥PPP⊥
Ω

(k)
i

�y
∥∥∥
2

(13)

where PPP⊥
Ω

(k)
i

is the orthogonal projector defined in Eq. 9.

Typical stopping criteria are thresholds on the maximum

number of generations and on the reprojection error of �̂x(k),

that is, the fitness of the fittest chromosome.

V. EXPERIMENTS AND RESULTS

We compare the proposed GA to OMP, the Chambolle

and Pock’s primal-dual algorithm [16], and the standard

multiobjective GA NSGA-II [7] for approaching a solution

to Eq. 4 in the CS setup. In order to assess their relative

sparse recovery performance, a series of experiments has

been carried out. For each experiment, an s-sparse signal

�x ∈ C
n is generated at random. Both the real and imaginary

parts of each nonzero complex coefficient are drawn from

i.i.d. normal distributions of zero mean and unit variance,

and the resulting �x is then l2-normalized. We use a best
complex antipodal spherical code (BCASC) as measurement

matrix AAA ∈ C
m×n in Eq. 3. BCASCs have been shown to

be optimal CS measurement matrices in terms of coherence.

We use our own fast implementation of the method in [17]

to construct AAA. We consider different experimental cases for

different values of the parameters δ = m/n and ρ = s/m,

with constant n = 128. More specifically, we evaluate the

entire δ − ρ plane, i. e., 0 ≤ δ ≤ 1, 0 ≤ ρ ≤ 1 by means of

16 equally-spaced discrete steps per parameter.

We use the same initial population (nind = 50) and

maximum number of generations K ∈ {5, 25, 50} for both

our approach and the NSGA-II. The maximum number of

iterations allowed for OMP and the Chambolle and Pock’s

algorithm is also set to be K. The rest of the parameters

are set as follows: kelite = 0.1, p
(0)
mut = 0.9, pmut = 0.9,

kbreed = 0.5, npair = 3nbreed, d = 3, kSSO = d− 1.

Fig. 2 provides the results in the shape of Donoho-

Tanner graphs of normalized recovery error. OMP exhibits

the best performance in terms of recovery error, restricting

the failure cases to the top-left corner of the δ−ρ plane. For

only 50 iterations (top left plot) OMP cannot estimate the

full signal support when its cardinality exceeds this value

and, consequently, non-negligible errors appear also in the

top-right corner of the graph. The Chambolle and Pock’s

algorithm exhibits similar behavior, also showing a top-

left failure region in the Donoho-Tanner graphs, but larger

than OMP. As few as 50 iterations suffice to attain exact

reconstruction for more than half of the Donoho-Tanner

graph. NSGA-II delivers acceptable results even for a low

number of iterations. In general, for most of the the δ − ρ
cases considered, the result does not improve much with

the number of iterations. The proposed GA for constrained

l0 minimization (last row) outperforms the reference GA,

showing much better performance in the cases of large δ.

Also the bottom region of exact reconstruction is larger

than in the NSGA-II case and slightly improves with the

number of iterations. The top-left failure area is significantly

pushed towards that corner in comparison to NSGA-II,

getting closer to the behavior observed for the Chambolle

and Pock’s algorithm, which we locally outperform in the

bottom-left region for 50 iterations.

In terms of time, OMP is the fastest option, specially

when s is low, followed by the Chambolle and Pock’s

algorithm. The GAs exhibit execution times that are two

orders of magnitude longer than the Chambolle and Pock’s

algorithm. Both NSGA-II and our approach showed similar

execution times. Both for our approach and the Chambolle

and Pock’s algorithm the execution time slightly increases

with δ and is independent of ρ, while NSGA-II shows a

more uniform behavior.

VI. CONCLUSION

In this work a GA has been proposed that approaches a

solution to the linearly-constrained l0 minimization problem

that needs to be solved in a conventional CS framework.

Differently from generic multiobjective GAs, which can

also be used for this task, the structure of our algorithm

has been specifically designed for solving this problem.

The chromosomes represent different sparse support confi-

gurations and a temporal solution is uniquely associated to

each of them. A single fitness function is used to evaluate

how well each temporal solution fits the measurements

and the sparsity requirement is enforced by means of a

crossover strategy based on support set overlap (SSO).

Pairings between chromosomes are established following a

deterministic scheme and a custom number of individuals

can take part in each pairing.

We evaluate the performance of our approach in a typical

CS scenario, in which an s-sparse n-dimensional signal is

to be recovered from m measurements. Our experiments co-

vered the whole range of the parameters 0 < δ = m/n ≤ 1
and 0 < ρ = s/m ≤ 1 and three reference algorithms

were considered for comparison: OMP, the Chambolle and

Pock’s primal-dual algorithm and NSGA-II. OMP and the

Chambolle and Pock’s algorithm showed to be superior to

the GAs, both in terms of reconstruction error and execution

time. Restricting the attention to the GAs, the proposed GA

widely outperforms NSGA-II, significantly pushing the fai-

lure area towards the top-left corner of the Donoho-Tanner

graphs, approaching the performance of the Chambolle and

Pock’s algorithm. The huge parallelization potential of GAs

w.r.t. conventional algorithms, together with the encouraging

results presented here, boosts the attractiveness of further

research on this topic.

2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

110



Normalized Sparse Recovery Errors. OMP with ≤50 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρ
 (s

/m
)

Normalized Sparse Recovery Errors. OMP with ≤250 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. OMP with ≤500 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. Chambole&Pock's Alg. with ≤50 iterations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. Chambole&Pock's Alg. with ≤250 iterations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. Chambole&Pock's Alg. with ≤500 iterations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. NSGA-II with ≤50 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. NSGA-II with ≤250 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. NSGA-II with ≤500 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. Proposed GA with ≤50 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. Proposed GA with ≤250 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
 (s

/m
)

Normalized Sparse Recovery Errors. Proposed GA with ≤500 iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ (m/n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρ
 (s

/m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2: Donoho-Tanner graphs of the recovery errors obtained using (rowwise from top to bottom) OMP, the Chambolle

and Pock’s algorithm, NSGA-II and our approach. The number of iterations/generations increases from left to right.
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