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Abstract—Compressive sensing (CS) theory enables linking
the sensing effort, that is, the volume of data that a sensor
produces, to the amount of information this data conveys,
rather than to the desired bandwidth, as prescribed by classical
sampling theory. As a consequence, in the typical CS scenario,
one ends up with a set of m measurements and the objective
is to recover a signal whose dimensionality is n � m,
typically under the assumption of being sparse. Recovering the
sparsest solution that satisfies the measurements is an NP-hard
problem and a common workaround is relaxing it to a linearly-
constrained l1 minimization. In this work we introduce a novel
algorithm for solving this problem that exhibits the structure
of a genetic algorithm, but fully operates in null-space domain.
This allows reducing the dimensionality of the chromosomes
to the minimum, i. e., n−m. Crossover follows a deterministic
scheme, with adjustable number of parents and children per
pairing. Furthermore, mutations are not random, but guided
along the direction of the negative gradient of the fitness
function. Numerical simulation revealed that the proposed
algorithm performs better than comparable alternatives in
terms of reconstruction error when the number of iterations is
to be kept very low. This, together with its high parallelization
potential, paves the way for faster CS reconstruction.

I. INTRODUCTION

The Shannon sampling theorem is an undeniable cor-

nerstone of modern signal acquisition and communication

systems. Unfortunately, tying the bandwidth of a sampling

system to the bandwidth of the signal being sensed translates

into large volumes of data per time unit when the desired

bandwidth is large. The most common countermeasure

for bounding the transmission and storage requirements is

performing some signal compression right after sensing, but

the sensing effort remains directly linked to the bandwidth.

The groundbreaking theory of compressive (or compressed)

sensing (CS), has shown that most real signals can, in fact,

be recovered from a reduced number of measurements, often

much lower than that suggested by Shannon, effectively

reducing the sensing effort. Unfortunately, recovering a

discrete signal from a number of measurements that is lower

than its dimensionality is an underdetermined problem. In

order to recover the signal one needs to exploit the bounded

information constraint, which translates into solving an l0
minimization of the signal representation in some basis

where the signal can be sparsely represented. In CS the

measurements are linear and, therefore, reconstructing the

signal means solving a linearly-constrained l0 minimization.

Provided that this is known to be an NP-hard problem, it

is common to solve a linearly-constrained l1 minimization

instead, which is the convexification of the previous.

In this work we focus on solving this problem operating

in the null space of the sensing matrix, which models the

linear constraints. Obviously, given any initial solution to the

underdetermined system of linear equations, the addition of

any vector living in the null space of the sensing matrix also

yields a solution. In other words, given an initial solution,

the challenge is to find a null space vector that added to it

yields the minimal l1 norm. Existing CS recovery methods

can be roughly classified between greedy algorithms, which

sequentially build the sparse signal support, and methods

that solve the constrained l1 minimization instead. The first

ones are able to ensure that the reconstructed signal is actu-

ally sparse, but the reprojection error may be different from

zero. Methods of the second type are typically optimization

schemes, in which the cost function is a (weighted) sum of

two terms: one for the reprojection error and the other for l1
regularization. Methods operating in the null space first fix

the subspace where the feasible solutions live and then look

for the one with minimal l1 norm, thus always fulfilling the

measurements.

Recently, Kalman filters have been suggested as an al-

ternative algorithm architecture for CS signal recovery. The

core idea of these approaches is integrating the norm to

be minimized, e. g., the l1 norm, as a pseudomeasurement

within the filter. Of special interest is [1], since it proposed

for the fist time that the filter operates in null space domain,

thus reducing the dimensionality of the state vector to

the actual number of remaining degrees of freedom, that

is, to the minimum. In this work we adopt the idea of

operating exclusively in null space domain, but we do not

restrict the algorithm to a single state vector, but to a

population of feasible solutions. Inspired by the concept of

natural adaptation present in biological systems, we make

the population evolve by combining crossover of the fittest

individuals with mutation of the offspring, yielding a genetic

algorithm (GA). Differently from GAs, mutation is not

fully random, but mimics a (restricted) gradient descent
iteration, which accelerates convergence. The proposed GA

outperforms of state-of-the-art CS recovery algorithms for

low number of iterations in terms of reconstruction error,

while exhibiting much higher parallelization potential.
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II. THE COMPRESSIVE SENSING SCENARIO

The mathematical theory of compressive sensing (CS)

[2], [3] states that real-world signals can often be recovered

from much fewer measurements than those suggested by the

Shannon sampling theorem. The Shannon sampling theorem

links the sampling rate that is required for acquiring a

continuous signal to the maximum frequency contained in it.

Rather than an upper bounded on the frequency, CS theory

requires the signal to be sparse in some basis or tight frame.

If this holds and some additional requirements regarding

the sensing scheme are satisfied, then the signal can be

exactly recovered from few non-adaptive measurements. Let

�x ∈ C
n be the discrete signal we want to recover, in its

sparse representation. The l0 norm of �x is defined as:

‖�x‖0 := lim
p→0

‖�x‖pp = | supp (�x)| (1)

that is, the cardinality of the support of �x, and �x is called

an s-sparse signal if ‖�x‖0 ≤ s. Provided that the sparsity

requirement is satisfied, the challenge is to reconstruct �x
from m � n linear measurements. Thus, the measurement

model is described by the underdetermined linear system:

�y = AAA�x (2)

where AAA ∈ C
m×n is the measurement matrix, which

explains how the vector of measurements �y ∈ C
m relates

to �x and may be the composition of the actual sensing
matrix, and a dictionary. Unfortunately, the problem we

would like to solve, that is, finding the sparsest �x satisfying

Eq. 2, is known to be NP-hard. A common workaround is

convexifying the problem turning the l0 minimization into

l1. Given any particular solution to Eq. 2, �x0, finding the

constrained l1 norm minimizer is equivalent to solving:

�̂x = argmin
�x∈{N (AAA)+�x0}

‖�x‖1 subject to �y = AAA�x (3)

where N (AAA) denotes null space of AAA.

III. RELATED WORK

Primal-dual interior point methods have shown to be

efficient tools for solving Eq. 3. Provided that the problem

in Eq. 3 can be directly expressed as a linear program, the

classical Newton method can be used to approach a solution,

as in the l1-magic library [4]. The Chambolle and Pock’s

(C&P) primal-dual algorithm [5], which is often referred as

the fastest method for solving Eq. 3, is a first-order primal-

dual method for convex optimization problems with saddle-

point structure and convergence rate O(1/n).
Using a Kalman filter for estimating sequences of sparse

signals from a reduced set of compressed measurements

was initially proposed in [6]. In this work, once the sig-

nal support is estimated, a Kalman filter with reduced-

dimensionality state vector runs in time domain until the

Kalman innovation gets too large. Then the support needs

to be estimated again. Both support element addition and

removal are based on thresholding, thus subjugating the

algorithm’s performance to threshold tweaking. The same

idea of supposing negligible signal support changes bet-

ween consecutive signals is adopted by in [7]. Supposing

constant support, a solution and its corresponding residual

are obtained. Then further addition of support elements

is considered by performing CS reconstruction using the

residual as vector of measurements. As before, both addition

and deletion of support elements imply thresholding. A

reduced-dimensionality Kalman filter is suggested as super-

structure to improve the estimation of the vector coefficients

indexed by the support set, supposing that the system

model is known. Note that both in [6] and [7] the sparse

recovery algorithm is uncoupled from the probabilistic filter.

Differently, in [8] the authors propose including the norm

to minimize, typically the l1 norm, but also quasi-norms
lp, 0 ≤ p < 1, as an additional measurement of the filter.

This way, the filter can perform the signal reconstruction

by itself, while dynamically incorporating new compressed

measurements as they arrive.

Independently from the aforementioned works, a Kalman

filter for solving Eq. 3 was proposed in [1] an further studied

in [9], [10]. The l1 norm of the temporal solution is the

only measurement of the filter, which has the peculiarity of

operating in N (AAA). At each iteration the algorithm tries to

push down the l1 norm of the temporal solution by incorpo-

rating a measurement that is slightly lower than the actual

l1 norm. A major issue of such an algorithm is defining

an optimal sequence of step sizes across iterations. Using a

simple scaling of the l1 norm by some factor 0 < γ < 1,

as in [1], is not efficient. In our reimplementation we use

an Aitken-based convergence acceleration for automatically

adjusting the synthetic l1 shrinkage.

Regarding the use of GAs for sparse signal recovery in

CS, most works used the GA for optimizing parameters of

the CS framework, be the number of measurements, i. e.,

number of rows of the sensing matrix, as in [11]–[13],

be specific parameters of the reconstruction algorithm, as

in [14]. In these works the GA is completely uncoupled

from the signal recovery algorithm. More interesting are

the works where the GA is directly used as sparse re-

covery algorithm. In [15], [16] the nondominated sorting

GA named NSGA-II [17] is used as multiobjective GA.

The fitness function is composed by two terms, namely,

the l0 norm of the solution and its reprojection error. In

[18] a GA combined with bacterial foraging optimization

(BFO) is used to find the global optimum to multimodal

optimization problems such as CS sparse reconstruction, but

no details are provided on how the multimodality of the

fitness function is handled. The hybrid GA of [19] includes

a step of modified parallel coordinate descent (PCD) to

prevent the algorithm from getting stuck. The algorithm

solves the sparse reconstruction problem for known s by

means of an explicit s-thresholding after crossover. We

suppose that there is no a priori knowledge on s, nor on

the amplitudes of the non-zero components.
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IV. A GA FOR CONSTRAINED l1 MINIMIZATION

In the following we present our GA for solving the con-

strained l1 minimization introduced in Eq. 3. Our approach

shares with GAs the typical sequential structure of mutation,

selection of the fittest individuals for breeding, according

to some fitness function, and crossover to generate new

individuals for the next generation [20]. A block diagram

of the algorithm is provided in Fig. 1. Despite the problem

being solved and the idea behind the solving scheme is

different, the sequence of genetic operations has been taken

from [21] without major modifications. The population

individuals or chromosomes have n−m genes instead of n.

If each gene can adopt b different values or alleles, then

there exist bn−m different possible genetic structures or

genotypes. Each chromosome of the population embodies

the coefficients of a null space vector in a given null

space basis. Recall that N (AAA) is an (n −m)-dimensional

subspace of Cn. The number of alleles b corresponds to the

number of bits used for quantization. The ith chromosome

at generation kth is denoted �n
(k)
i .

A. Initial Population

The chromosomes of the initial population P(0) are

randomly generated. More specifically, we draw the real

and imaginary values of each of the genes from i.i.d.
normal distributions of zero mean and unit variance. For any

arbitrary population at generation k, the associated temporal

solutions are given by:

�x
(k)
i = �x0 +EEEN (AAA)�n

(k)
i (4)

where EEEN (AAA) ∈ C
(n−m)×n denotes the basis of N (AAA).

B. Mutation

The process of mutation applied over some population

P(k) means that the chromosomes undergo stochastic chan-

ges in the values of their genes. We define a single mutation

probability pmut gen, which is the probability that any gene

of any chromosome undergoes mutation. Typically, when

a gene mutates, the mutated allele (feasible value) is also

randomly chosen from the bn−m possibilities. Unfortuna-

tely, the GA becomes unacceptably slow for values of b
that are not too small, such as those typically used for

quantization in conventional computers. In other words,

the manifold of directions in which each chromosome can

evolve via mutation becomes too large to be explored in a

random fashion, unless very large populations are used.

In order to overcome this issue, we propose applying

mutations that are not fully random, but partially seek

maximizing the decrease of the cost function. To this end

our mutation process is divided in two sequential steps.

First, for each chromosome in the population the set of

genes that will undergo mutation is defined by means

of realizations of i.i.d. Bernoulli distributions of pmut gen

success probability. For the chromosome i at generation k

the set of gene indices to undergo mutation is denoted M
(k)
i .

Then, for each �n
(k)
i with corresponding gene mutation set

M
(k)
i , the gradient of the fitness function restricted to M

(k)
i

is calculated. The second step is using the M
(k)
i -restricted

gradient to mutate the chromosome �n
(k)
i by means of a

(restricted) gradient descent step, namely,

⎧⎪⎨
⎪⎩

(
�n
(k) ′
i

)
M̄

(k)
i

=
(
�n
(k)
i

)
M̄

(k)
i(

�n
(k) ′
i

)
M

(k)
i

=
(
�n
(k)
i

)
M

(k)
i

+ τ
(k)
i ∇

M
(k)
i

f
(
�n
(k)
i

)

(5)

where the prime is used to denote the same chromosome

after mutation, (·)M denotes restriction to the dimensions

indexed in the set M , and ∇M denotes the M -restricted

gradient, different for each chromosome at each generation.

At each iteration the step size τ
(k)
i is calculated by means of

a backtracking line search. This controlled mutation scheme

allows for using larger pmut gen, speeding the GA at no risk

of divergence. Mutation tends to a pure per-chromosome

gradient descent iteration as pmut gen → 1.

C. The Fitness Function

The so-called fitness function evaluates how fit a po-

pulation individual or chromosome is according to some

evaluation criterion. In other words, the fitness function is

the function for which we seek an optimizer. Our fitness

function is the l1 norm of the temporal solution associated

to �n
(k)
i and given by Eq. 4, that is,

f
(
�n
(k)
i

)
=

∥∥∥�x0 +EEEN (AAA)�n
(k)
i

∥∥∥
1
. (6)

Note that, differently from prior work on GAs for con-

strained sparse recovery (see related work in [21]), we do

not need a reprojection error term, since we keep operating

within N (AAA) and all temporal solutions necessarily satisfy

Eq. 2.

D. The Selection Scheme

After evaluating the fitness of the individuals using Eq. 6,

groups are formed according to the obtained values. In

our case, the fittest individuals are those chromosomes

with the lowest function values. In short terms, only the

fittest ones should take an active role in producing the next

generation of the population. We adopt the selection scheme

presented in [21], which contemplates both a set of parents,

which will breed the next generation, and an elite, which

is transferred to the next generation unchanged. As in [21],

the elite is denoted P
(k)
elite at generation k and is of size∣∣∣P(k)

elite

∣∣∣ = nelite = kelitenind. The set of parents is denoted

P
(k)
breed, with size

∣∣∣P(k)
breed

∣∣∣ = nbreed = kbreednind, with

0 < kelite � kbreed < 1. Clearly, P
(k)
elite ⊂ P

(k)
breed ⊂ P(k).

In order to prevent the population size from shrinking, a

third subset of the population may become necessary: the

contingency population, P
(k)
cont ⊂ P(k) \P(k)

elite.

E. Crossover

In the context of GAs, crossover refers to the process

of generating a population of children, P
(k)
child, of size∣∣∣P(k)

child

∣∣∣ = nchild from a previously-selected breeding
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Fig. 1: Block diagram of the proposed genetic algorithm. The chromosomes represent different null space vectors. Some

genes of each chromosome undergo mutation, being direction of such mutations given by the negative gradient of the

fitness function. A small elite of the fittest chromosomes is passed to the next generation without modifications. A bigger

group of fit individuals is selected for breeding. Pairings between parents are established according to an LDPC matrix.

population P
(k)
breed. The original concept of crossover, as

described in [20], only contemplates pairings between two

different chromosomes and generates two children per pai-

ring by exchanging mutually-exclusive segments of genes.

Both the establishment of pairings and the exchange of

genetic information between parents are random processes.

In this work we adopt a different crossover strategy. In the

following we detail the two tasks of our crossover scheme,

namely, establishing pairings and generating children from

the pairings.

We adopt the general pairing scheme introduced in [21]

for defining how nbreed selected individuals are implied in

npair pairing events. This pairing strategy is not random, but

deterministic, based on Low-Density Parity-Check (LDPC)

codes, and allows for a custom number of parents per

pairing d ≥ 2.

For each of the npair pairings, an adjustable number

of children per pairing ncpp is generated. Each child of

a pairing is obtained as a different weighted sum of the

parent chromosomes implied in the pairing. The weights

are all positive, drawn from a uniform distribution, and

normalized to sum up 1. The total number of children is

nchild = ncppnpair.

F. New Generation and Stopping Criterion

The temporal population P
(k)
child∪P

(k)
cont undergoes muta-

tion and posterior fitness evaluation (see Fig. 1). The final

offspring, P
(k)
off , is then composed by the nind−nelite fittest

individuals of this (mutated) temporal population. The next

generation is given by the union P(k+1) = P
(k)
off ∪ P

(k)
elite.

The fittest chromosome is selected to distill a prospective

solution from the population:

�̂x(k) = �x0 +EEEN (AAA)�n
(k)
ik

ik = argmin
i

∥∥∥�x0 +EEEN (AAA)�n
(k)
i

∥∥∥
1

(7)

A threshold on the maximum number of generations or

on the variation of the minimal l1 norm of the temporal

solutions can be used as stopping criteria.

V. EXPERIMENTS AND RESULTS

The proposed null-space-based l1-minimizing GA is com-

pared to OMP, the Chambolle and Pock’s (C&P) primal-

dual algorithm [5], Loffeld’s l1-minimizing Kalman filter

[1], a baseline performing pure gradient descent on null-

space domain (NSP-GD), and the standard multiobjective

GA NSGA-II [17] as CS recovery algorithms. OMP and

NSGA-II directly search for an l0 minimizer, while the

others solve Eq. 3 instead, despite not all of them operate in

N (AAA). Our implementation of the l1-minimizing Kalman

filter uses an Aitken-based convergence acceleration for

automatically adjusting the synthetic l1 shrinkage at each

iteration. A series of experiments has been carried out

to evaluate the different approaches in terms of sparse

recovery performance. A different s-sparse signal �x ∈ C
n

is randomly generated for each experiment. Both the real

and imaginary parts of the nonzero complex coefficients are

drawn from i.i.d. normal distributions of zero mean and unit

variance, and the resulting �x is then l2-normalized. We use

a best complex antipodal spherical code (BCASC) as close-

to-optimal measurement matrix AAA ∈ C
m×n in Eq. 2. Our

own fast implementation of the method in [22] was used to

construct AAA. We consider different experimental cases for

different values of the parameters δ = m/n and ρ = s/m,

with constant n = 128. More specifically, the entire δ − ρ
plane, i. e., 0 ≤ δ ≤ 1, 0 ≤ ρ ≤ 1 is evaluated by means of

16 equally-spaced discrete steps per parameter.

The same population size (nind = 50) and maximum

number of generations K ∈ {5, 25, 50} was considered for

both our approach and NSGA-II. The maximum number

of iterations allowed for all other algorithms is also set

to be K, except for OMP, for which 10K is used. The
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other parameters of our GA are set as follows: kelite = 0.1,

pmut gen = 1, kbreed = 0.5, npair = 3nbreed, d = 2,

ncpp = 3.

Fig. 2 provides the obtained Donoho-Tanner graphs (ρ
vs. δ) of normalized recovery error. The best-performing

algorithm is OMP, for which the failure cases are confined

to the top-left corner of the δ−ρ plane. The non-negligible

errors in the top-right corner of the top-left plot of Fig. 2

are due to the fact that OMP cannot estimate the full signal

support when its cardinality exceeds the number of itera-

tions. The C&P’s algorithm, NSP-GD, and our GA show

similar behavior, with failure regions located at the top-left

corners of the Donoho-Tanner graphs, but larger than OMP.

As few as 50 iterations suffice to attain exact reconstruction

for more than half of the Donoho-Tanner graph using

C&P’s algorithm, being slightly better than the other two

alternatives. Our GA widely outperforms NSGA-II, whose

performance does not improve much across iterations. The

proposed GA is attractive for very low number of iterations

(< 25), for which the error is much lower than using the

NSP-GD baseline. As the number of iterations grow, the

chromosomes in the population become too similar due to

the gradient-biased mutation scheme and the GA has no

advantage over NSP-GD. The l1-minimizing Kalman filter

requires a larger number of iterations and, in fact, for 500
iterations the C&P’s algorithm and the Kalman filter deliver

similar Donoho-Tanner graphs. In short terms, the proposed

null-space-based GA with gradient-biased mutation exhibit

better performance than comparable algorithms for very low

number of iterations, while classical approaches, like OMP

or the C&P’s algorithm remain the best choice for larger

number of iterations.

VI. CONCLUSION

A GA has been proposed for solving a linearly-

constrained l1 minimization, with application as CS recon-

struction algorithm. To the best of our knowledge, we are the

first proposing a GA that works exclusively in N (AAA). This

translates into individuals of size n−m, rather than n, as it

was the case in previous works. Also, the integration of the

linear constraints in the shape of the basis of the subspace

where the chromosomes live allows us using the l1 norm

of the temporal solutions as single fitness function, while

other approaches require a multiobjective fitness function

with an additional term for the reprojection error. Mutation

is not fully random, but biased towards the gradient descent

direction, thus accelerating convergence.

The performance of the proposed approach as sparse

recovery algorithm in CS has been evaluated. In the expe-

riments synthetic s-sparse n-dimensional complex signals

are to be recovered from m � n measurements. Donoho-

Tanner graphs were generated for the entire range of the

parameters 0 < δ = m/n ≤ 1 and 0 < ρ = s/m ≤ 1 and

five reference algorithms were considered for comparison:

OMP, the C&P’s primal-dual algorithm, an accelerated l1-

minimizing Kalman filter, a NSP-GD baseline, and NSGA-

II. The results show that the proposed GA offers superior

performance for very low number of iterations. This, toget-

her with its greater parallelization potential paves the way

for faster CS reconstruction. If the number of iterations is

unconstrained, OMP and the C&P’s algorithm still remain

the best choices.
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Normalized Sparse Recovery Errors. OMP with 50 iterations.
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Normalized Sparse Recovery Errors. OMP with 500 iterations.
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Normalized Sparse Recovery Errors. Chambole&Pock's Alg. with 5 iterations.
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Normalized Sparse Recovery Errors. Chambole&Pock's Alg. with 25 iterations.
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Normalized Sparse Recovery Errors. Chambole&Pock's Alg. with 50 iterations.
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Normalized Sparse Recovery Errors. l1 Min. Kalman Filter with 5 iterations.
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Normalized Sparse Recovery Errors. l1 Min. Kalman Filter with 25 iterations.
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Normalized Sparse Recovery Errors. l1 Min. Kalman Filter with 50 iterations.
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Normalized Sparse Recovery Errors. Grad. Desc. in Null Space with 5 iterations.
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Normalized Sparse Recovery Errors. Grad. Desc. in Null Space with 50 iterations.
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Normalized Sparse Recovery Errors. NSGA-II with 5 iterations.
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Normalized Sparse Recovery Errors. Null-space-based GA with 5 iterations.
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Normalized Sparse Recovery Errors. Null-space-based GA with 25 iterations.
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Normalized Sparse Recovery Errors. Null-space-based GA with 50 iterations.
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Fig. 2: Donoho-Tanner graphs of the recovery errors obtained using (rowwise from top to bottom) OMP, the Chambolle

and Pock’s algorithm, the l1-minimizing Kalman filter, gradient descent on null-space domain, NSGA-II and our approach.

The number of iterations/generations increases from left to right.
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