
A State of the Art Report on Kinect Sensor
Setups in Computer Vision

Kai Berger1, Stephan Meister2, Rahul Nair2, and Daniel Kondermann2

1 OeRC Oxford, University of Oxford (firstname.lastname@oerc.ox.ac.uk)
2 Heidelberg Collaboratory for Image Processing, University of Heidelberg

(firstname.lastname@iwr.uni-heidelberg.de)

Abstract. During the last three years after the launch of the Microsoft
Kinect R© in the end-consumer market we have become witnesses of a
small revolution in computer vision research towards the use of a stan-
dardized consumer-grade RGBD sensor for scene content retrieval. Be-
side classical localization and motion capturing tasks the Kinect has
successfully been employed for the reconstruction of opaque and trans-
parent objects. This report gives a comprehensive overview over the main
publications using the Microsoft Kinect out of its original context as a
decision-forest based motion-capturing tool.

1 Introduction

In early March 2010 Microsoft released a press text [54] that it would work to-
gether with PrimeSense, a Tel-Aviv based chip supplier, on a ”groundbreaking
optical-sensing and recognition technology to aid gesture control platforms.” for
the upcoming holidays. The goal of the project, internally known as ”Project Na-
tal” was to develop a new controller-free entertainment environment. Microsoft
anticipated a paradigm shift on how people would interact with consumer-grade
electronic devices.

The device itself was presented to a public audience at the E3 game conven-
tion. The device was launched in North America on November 4, 2010 and in
Europe on November 10, 2010. By the beginning of 2012, 24 million units were
sold. On February 1, 2012, Microsoft released the Kinect R© for Windows SDK
[53] and it is believed that more than 300 companies are working on apps that
employ the Microsoft Kinect. In November 2010, Adafruit Industries funded an
open-source driver development for Kinect. Although Microsoft initially disap-
proved their approach, they later clarified their position claiming that the USB
connection was left open by design. Adafruit recognized Hèctor Mart̀ın’s work
on a Linux driver that allows the use of both the RGB camera and depth sen-
sitivity functions of the device. It is publicly available for download under the
name libfreenect [62]. It is estimated that the OpenKinect community consists of
roughly 2000 members who are contributing their time and code to the project.
The code contributed to OpenKinect is made available under an Apache 2.0 or
optional GPL2 license. Another open source API is provided via the OpenNI



framework of the OpenNI Organization [63] in which PrimeSense is a major
contributor. In the middle of May 2013 Microsoft released a technical demo of
the successor, Microsoft Kinect 2.0, which is based on Time-Of-Flight imaging.
Both the availability of a consumer-grade RGBD sensor at a competitive price
and the Open Source project that allowed to easily read out the essential streams
from the sensor, quickly sparked an interest in the research community.
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Fig. 1. The impact of the Microsoft Kinect in the computer vision field is significant:
over the last three years, over 3000 papers related to the Microsoft Kinect have been
published in renowned journals and proceedings (e.g., IEEE Explore, Digital Library
of Eurographics, Proceedings of the ACM, Elsevier). Keywords associated with the
Kinect include simultaneous localization and mapping, object reconstruction, multiple
Kinect, interference mitigation, transparency and calibration.

Over the last three years a significant part of the published papers has been
devoted to the use of the Kinect in a scientific context, Fig. 1. Over 3000 papers
have been published in renowned journals and proceedings, e.g., Elsevier (208
papers), Eurographics (36 papers), ACM (651 papers), Springer (746 papers)
or IEEE Explore (1518 papers), which publishes CVPR and ICCV proceedings
among others. Of these, 276 papers refer to simultaneous localization and map-
ping problems and 227 are related to object reconstruction. Another 17 articles
recognize the challenge that transparency, e.g. from a glass object, would pose on
a sensor like the Kinect and proposed algorithms to reconstruct such transpar-
ent objects from depth streams from the Kinect. Finally, 47 papers address new
ways to calibrate the Kinect. Further details about the deployment of a single
Microsoft Kinect in academic context can be found in the manuscript submitted
by Han et al. [27].

We recognize that there are still new ambitious research projects incorpo-
rating the Microsoft Kinect, e.g. the project Kinect@Home [2]. There, the user
can help robotics and computer vision researchers around the world by scan-
ning their office/living room environment with the Kinect. In return the user is
delivered a 3D model of the very room.

The remainder of this state-of-the-art report is structured as follows: after
reviewing the sensor itself in Section 2, we will introduce papers related to its use
as a simultaneous localization and mapping tool in Section 3. Afterwards, we will



expand on motion capturing scenarios in which the Kinect has been employed,
e.g. hand tracking, Section 4. Then, we will have a look into the research field
that incorporates the Kinect as a tool to reconstruct non-opaque objects and
motion, Section 5. In Section 6 we will present methods to improve or denoise
Kinect depth maps while focusing on sensor fusion approaches. Finally, we will
conclude and give an outlook, Section 7.

2 The Kinect 1.0 Sensor

Fig. 2. Typically, the Microsoft Kinect would be found in the living room of a Microsoft
Xbox user. Left: typical usage scene, Center: infrared pattern, Right: colorcoded
depth map.

The Microsoft Kinect is the first structured light sensor available for the
consumer market. Designed as a motion sensing input device for the gaming
console Microsoft XBox 360 R© the Kinect is intended to be used for gaming
purposes. A typical usage environment can be seen in Figure 2(Left). With the
Kinect it is possible for the XBox 360 to track movements of multiple players in
a game. Its pattern emission technique was invented by PrimeSense and licensed
by Microsoft for use in the Project Natal. The project OpenKinect provided
the open source library libfreenect that enables PCs to use the Kinect as an
input device via USB 2.0. This enabled users to experiment with an easy to
access realtime capable depth tracking system. Compared to state-of-the-art
depth capturing systems, e.g. time-of-flight (ToF) cameras, the system costs were
negligible. With the success of the Kinect, other company’s devices licensing the
same technique from PrimeSense did appear. Asus introduced two devices called
Xtion and Xtion LIVE with the underlying technique being the same as in the
Kinect.

The coded light approach employed for the depth mapping is a simple and
effective way to acquire depth data of a scene. A light, here an IR laser, projects
a unique pattern onto the surface of the scene (see Figure 2(Center) for an exam-
ple). This projection is recorded by a camera which is capable of capturing in the
spectrum in which the pattern is emitted. Then, an integrated circuit computes
the disparity for subpatterns by comparing them to their default positions at a
given distance. For the disparity values the distance in meters for each pixel in
the depth image can be computed. The structured light or active stereo approach
is well known and has long been used by structured light scanners e.g. in the form
of gray-codes for high precision depth measurements. The special pattern of the
light used in the Kinect is particulary suited for fast disparity estimation using



block-matching and has been introduced by PrimeSense. In so far the Kinect
suffers from the same depth estimation problems as other active or also passive
stereo systems, mainly inaccurate depth at occlusion boundaries and problems
with reflecting or transparent surfaces. A colorcoded representation of the depth
values can be seen in Figure 2(Right).

3 SLAM and 3D Reconstruction

3D reconstruction and simultaneous localization and mapping (SLAM) are two
closely connected fields of application which both can benefit from accurate
depth data. Both can rely on either monoscopic reconstruction methods without
prior depth information, sparse 3D data e.g. from laser rangefinders or dense
depth maps e.g. from stereoscopic systems. Although systems utilizing only
depth data or only visual data have been in use for decades, the integration
of RGBD to make the systems more robust is a relatively new development.
Apart from algorithms which were specifically designed for the Kinect we will
also cover those that combine RGB and depth data in new ways and those
which were inspired by these works even if they are not specifically limited to
the Kinect.

A first step in both algorithm classes is the estimation of camera movement
between consecutive frames. As shown by Handa et al. [28] tracking does gener-
ally benefit from high-frame rates alongside high resolution and low SNR. The
Kinect sensor fills a niche in that it can supply dense depth maps in realtime.
Examples for odometry algorithms which use depth data were presented by Kerl
[41] or Steinbrücker [75]. Additionally, it has been shown by Newman and Ho
[58] that visual features can effectively be used to solve the loop-closing problem
in SLAM applications. The simultaneous availability of RGB and depth data
can in this context be further exploited to calculate a dense scene flow [23]. Spe-
cific calibration considerations are discussed in [73] or [33]. Currently, there is
no known SLAM system that uses multiple Kinects, although motion tracking
with stationary cameras was demonstrated e.g. by Faion et al. [19] or Schönauer
and Kaufmann [71].

One of the first methods to utilize the Kinect in a SLAM system is the
framework presented by Henry et al. [30][31]. Here, features extracted from the
RGB images are used for the initial camera pose estimation which is then refined
by applying an iterative closest point algorithm (ICP) on the depth data. Hu et
al. [34] use a similar approach but fall back to pure RGB based pose estimation if
the depth features are insufficient, thereby adding the advantages of depth maps
without inheriting their problems. Another approach was presented by Endres
et al. [18] who also extract RGB features but then reproject these features into
3d to perform pose estimation in a closed form. All these algorithms can be used
for online processing but unlike most recent developments which utilize GPU
computation they are not real-time capable. Additionally, they do not always
produce dense 3d representations like the following reconstruction algorithms as
this is generally not necessary for localization tasks.



Accurate 3d reconstruction was until now a slow and expensive process as
it was mostly based on laser or structured light scanners. The KinectFusion
algorithm which was first introduced by Newcombe, Izadi et al. [57][38] and
its subsequent improvements [66][32][83] represent a new direction in algorithm
development as it is fast and depends only on commodity hardware. It creates
an implicit voxel representation of a scene from the depth data using truncated
signed distances functions. Each new view from the camera is registered using
an Iterative Closest Point (ICP) algorithm. In that regard it behaves similar to
other SLAM algorithms but the in-memory voxel representation allows for highly
parallelized processing using GPUs. By providing a realtime 3D reconstruction
method in the low to medium accuracy range (mm to cm regarding depth) it
makes 3D scanning affordable for a wide field of potential users.

An analysis of the KinectFusion reconstruction performance has been per-
formed by Meister et al. [52]. They compared the 3D meshes created by the
KinectFusion system with high accuracy scans from LiDAR or structured light
scanners to provide definite accuracy measures for mesh surfaces and derived
values. The results suggest that the method is suitable even for applications
where one would suspect an accuracy as high as possible to be mandatory. The
geometric errors of 3D meshes created by KinectFusion can range from 10mm
for small scenes (less than 1 m across, see Figure 3 for an example) to 80mm
for room sized scenes. This may be too large for industrial inspection purposes
but perfectly reasonable for the creation of synthetic test sequences for low-level
image processing tasks, such as stereo matching or optical flow evaluation.

Fig. 3. Ground truth mesh, Kinect fusion mesh and euclidean surface error for scanned
object from [52].

Despite it’s impressive impact on both research and application alike the
algorithm should not be considered a full SLAM solution. It’s biggest drawbacks
are the limited scan volume (≈ 100 − 200m3 depending on graphics memory),
the tendency to loose camera tracking in regions with few geometry features
and the lack of explicit loop-closure handling. Some direct modifications of the
algorithm try to alleviate these problems. Moving Volume Kinect by Roth et
al. [66] allows the camera to leave the initial bounding volume but the basic
limits for the 3d model still apply. Others like Kinfu Large Scale [32] or [87]



use more memory efficient data structures to represent the volume data, e.g.
by using octrees. Kintinuous by Whelan et al. [83] continuously converts the
volume data to point clouds for processing in main memory. This effectively
removes any hard size limitations for the mapping volume. Whelan et al. also
combined their system with the odometry estimation by Steinbrücker to make
it more robust in case of missing geometric features [82]. This method is so
far the only KinectFusion inspired algorithm that integrates RGB data. Bylow
et al. [11] directly use the signed distance function of the voxel representation
instead of ICP to estimate the camera movement more exactly. Keller et al.
[40] drop the voxel representation altogether and use point-based fusion instead.
Their approach handles the Kinect specific depth noise better and can handle
dynamic scene content.

Other recent works try to combine SLAM with real-time capabilities and
dense 3d reconstruction. Examples include the works by Lee et al. [44] who di-
rectly create a polygon representation from the acquired depth data or Henry et
al. [29] who combine volumetric fusion with large-scale models. Finally, Stückler
et al. [76] [77] use a different method based on a surfel representation of the envi-
ronment. The camera pose estimation is also different in that it is estimated by a
likelihood optimization approach on the surfel distribution. These recent devel-
opments suggest that the distinction between SLAM and 3D reconstruction may
disappear in the near future as both algorithm types profit from improvements
made to each other.

4 Motion Capturing Setups

Fig. 4. An approach to incorporate multiple Kinects nondestructively in a motion
capturing setup: An externally synced rolling shutter assigns one Kinect a unique time
slot so that three other Kinects can capture as well. Such setups enable the capturing of
obstructed motions or of motions with the actor not facing a camera. Red dots represent
the emitters (projectors) while green dots represent receivers (cameras). Reproduced
from [70].

Shotton et al. [72] introduced the Kinect and its underlying algorithm as a
tool to capture the human pose from monocular depth images. Quickly there-
after, monocular motion capturing has gotten into the focus of the research
community [22, 65, 60], with the Microsoft Kinect being the device to generate



datasets and benchmarks. What can be done with this research has been shown
by Chen et al. [13]. Besides the tracking of limbs and joints quickly other research
fields in monocular depth processing have emerged.

One interesting research direction for example is to use the Microsoft Kinect
as a hand-tracking device. Oikonomidis [61] presents an approach based on par-
ticle swarms to discriminate between the palm and single fingers. Frati and his
colleagues [21] assume the hand to always be closest to the camera and calculate
convexity defects from the bounding box of the hand with the help of OpenCV
while Reheja and his colleagues first detect the palm with a circular filter and
then remove it to arrive at the shapes of individual fingertips in the depth im-
age [64]. An interesting approach has been proposed by Van den Bergh et al. [6],
who estimate the orientation of the hand from the orientation of the forearm
in the depth image. The posture itself is estimated by employing an Average
Neighborhood Margin Maximization (ANMM) algorithm [80].

With the Microsoft Kinect it is also possible to capture facial movements.
Zollhofer et al. [89] showed how to fit deformable facial meshes to depth data
captured from human faces by relying on feature points (eyes, nose) in the depth
data. Leyvand et al. also examine the face recognition of identical twins given
depth and motion data from the Microsoft Kinect [46].

In 2011, Berger and his colleagues showed, that it is also possible to employ
multiple Microsoft Kinects in one scene for motion capturing research [5]. Their
incentive was to enable the capturing of partially obstructed poses, e.g. from
persons facing away from the camera or in small rooms. Using a specifically tai-
lored external hardware shutter [70] they were able to reduce the sensor noise
introduced from neighboring Kinects, Fig. 4. Their approach relied on synchro-
nized rolling shutters for up to four devices. This idea was quickly adopted and
further developed by Maimone and Fuchs [50] in a shake and sense approach:
each Kinect sensor would slightly rotate around its up vector introducing scene
motion to the imaged scene except for its own projected pattern which always
moves accordingly. Thus, the accuracy of the depth image generated from its
own pattern would increase due to blurred out sensor noise from other Kinects.
The motion would be accounted for from the Kinect’s inertial sensor data. This
approach was further refined by Butler and his colleagues [10] who basically
hot-melt glued a motor to each device to introduce arbitrary motion.

5 Opaque and Transparent Reconstruction

With the availability of accurate depth data, the complete 3D reconstruction of
objects with the consumer-grade Kinect became a popular research branch. For
example, Tam and his colleagues [78] register point clouds captured with the
Kinect to each other.

However, the reconstruction need not necessarily be restricted to opaque ob-
jects. Lysenkov and his colleagues [48] describe an approach to recognize trans-
parent objects, e.g. a water glass, and to recognize its pose from the input images
of a Kinect device. Due to reflection and transmission the IR pattern shone onto



the transparent objects is not usable for depth estimation. Consequently, pixel
regions of the projected object in the depth image obtain invalid values, e.g. ap-
pear black. They use a key observation: Transparent and opaque objects create
surface and silhouette edges. Image edgels corresponding to a silhouette edge
can be detected at the boundary between the invalid and valid depth pixels. To
recognize transparent objects one can reconstruct it by moving the Kinect 360◦

around the object or by comparing it to a similar mesh in a database. They,
however, decide to register it beforehand by powdering it and thus making it
temporarily opaque. The silhouettes of the registered object are then used for
training. During the test phase later, they compare the silhouette edges created
by invalid pixels in the depth images with the silhouettes in the database us-
ing Procrustes Analysis as proposed by [51]. When a non-powdering approach
is pursued, the authors stress that it is important to provide additional cali-
bration information [47] for the Kinect in order to reconstruct its location to
the transparent object, whose only viable information are the silhouette edges
retrieved from the depth images. Another approach to reconstruct transparent
objects with the Kinect is to incorporate the RGB-sensor. Chiu et al. [15] pro-
pose to calibrate the RGB-camera with the IR-camera to arrive at a multi-modal
stereo image (i.e., depth, and the stereo from disparity between the RGB- and
IR-camera).

When the object to be reconstructed becomes time-varying, it is impossi-
ble to powder and capture it beforehand. In their work, Berger et al. [4] ex-
amined the possibilities to reconstruct transparent gas flows using the Kinect.
They ruled out seeding particles and decided to follow a Background-oriented
Schlieren approach. The projected IR-pattern of each Kinect is hereby used as
the background pattern. The silhouette boundaries would become visible in the
depth sensor by the index gradient between the flowing gas, there propane, and
its surrounding medium (air). As propane obtains a refractive index of roughly
1.34 the difference to the surrounding air would be sufficiently high enough to
introduce noticeable pixel deviations at a distance of 3m between scene walls and
the Kinect camera. They concluded, that, when they would place three Kinects
in an half-arc around the flowing gas and projection walls at a fixed distance
opposite to it, they could detect difference in the depth images that would suffice
for silhouettes. Using the silhouettes of each Kinect they could enclose the gas
volume in the reconstructed visual hull for each frame. The silhouette generation
relied on fitting polynomials from left and right in each image [1, 4]. In further
research they concluded that it is also viable to directly use the deviations in the
IR-images for the silhouette reconstruction, by relying on a sparse spot-based
optical flow algorithm [69].

6 Enhancing Depth data

Although the Kinect delivers RGBD data of a sufficient quality for many appli-
cations, it is far from perfect. For example, as the projector is located to the right
of the cameras, no depth data can be obtained in areas to the left of occlusion



Fig. 5. The reconstruction of non-opaque motion. Three Kinects are placed in a circular
half-arc around propane gas flow, projection walls opposite to each Kinect. As the
Kinects do not interfere destructively with each other, meaningful information can be
retrieved for each sensor. The refractive index gradient present in the scene would
result in detectable depth deviations in each Kinect’s depth image stream. Reproduced
from [4]

boundaries due to shadowing. If the depth map is then additionally registered
to the RGB image, further information is lost. Other effects which are present
throughout the image are errors due to the sparsity of the point pattern, the
block size used for matching and the unknown smoothing that may addition-
ally be applied to the raw data. Most of these errors can best be observed at
depth edges. They lead to inaccurate depth boundaries, blobbing artifacts and
a reduced effective lateral resolution. Also like every other active depth imaging
technique the Kinect relies on the reflected light being of sufficient intensity.
This is not the case with dark IR absorbing surfaces that may additionally lie at
an angle to the camera or when strong IR light sources such as direct sun light
are present in the scene [55].

The question remains whether there is a real need for better quality or higher
resolution depth data. ICP [7][86] which is at the core of many pose and 3d re-
construction algorithms using Kinect, will produce better results given better
input data. Also, accurate silhouette information is a strong cue used for 3d
reconstruction [43].Some applications even depend on good initial depth data.
As an example the visual effects industry frequently requires dynamic scene ge-
ometry at resolutions ranging from Full HD to 4K [39]. Current depth cameras
meet the dynamic imaging requirement but fail to provide the necessary lateral
resolution. In the following we will review the various lines of research dealing
with the enhancement of depth images. Often, the papers presented deal with
Time of Flight data instead of Kinect. Many of these algorithms work on the
depth images and thus can be directly applied to Kinect data. Others also take
into account the noise characteristics of Time of Flight sensors which are gen-
erally quite different from those of the Kinect. Here, the noise model used must
be replaced with the Kinect noise model such es the empirical model recently
presented by Nguyen et al. [59].



Depth data denoising as a subdiscipline of image denoising has progressed
significantly and many edge preserving denoising techniques can be applied di-
rectly to range images. Examples would be diffusion based filters [81], non local
means [9] or bilateral filtering [79]. Unlike RGB images, depth images are gen-
erally considered to be comparitively smooth with few distinct edges [35][84].
This property allows for a much stronger regularization than would be possible
in RGB images. Lenzen et al. [45] apply an adaptive first and second order total
variation approach to regularize depth data while retaining edges and slopes.
Schoner et al. [68] apply a clustering approach to identify regions with similar
properties. Aodha et al. [49] learn the relation between noisy input images and
filtered output using decision tree ensembles [8].

As mentioned above, Kinect depth data contains many invalid pixels. To al-
leviate this problem, hole filling strategies which are related to image inpainting
can be employed. Danciu et al. presented a single-frame method based on mor-
phological filters [17]. Other Methods additionally use temporal information to
make the inpainting more robust. Xu et al. first detect moving objects to im-
prove edge stability before filling in holes [85], while Camplani and Salgado use
bilateral filtering in combination with a temporal consistency constraint [12].

A different method to enhance Kinect data is to apply a sensor fusion ap-
proach by adding additional depth imaging modalities to create superresolution
depth images. The sensor fusion methods can be differentiated by the employed
camera setup. As strategies for using multiple Kinects have been discussed in
Section 5 we will therefore limit ourselves to approaches using one or two ad-
ditional RGB cameras. As the Kinect sensor itself includes a RGB camera and
an IR camera, it can be used directly for RGBD fusion. Often though, an ex-
ternal RGB camera with a higher resolution is used for the fusion approach.
After aligning the RGB and IR camera employing standard camera calibration
techniques the main assumption is that depth edges often coincide with RGB
edges. Chen et al. [14] for example employ cross bilateral filtering to smooth the
resulting depth maps. Huhle et al. propose a graphical model with data terms
based on RGB and depth gradient strength in [36] and in [37] adapted non local
means filtering to encompass the additional data. Chiu et al. [15] on the other
hand use the cross modal stereo information between the IR and the RGB sensor
directly.

Most works which combine depth cameras with a regular passive stereo setup
have been done with ToF imagers but as already mentioned the methods can
be adapted to Kinect most of the time. One exception it the recently presented
method by Somanath et al. [74] which uses a kinect to improve stereo depth
estimates in ambiguous or low-textured regions. These methods use the range
imaging data to initialize stereo matching and impose constraints on the search
range depending on the depth budget and stereo noise model. Local methods
[42],[24],[3],[26],[16],[56] combine the stereo and the range imaging data term on
a per pixel level. Gudmundsson et al.[24] apply a hierarchical stereo matching
algorithm directly on the remapped depth data without considering uncertain-
ties. Kuhnert et al.[42] and Hahne et al.[26] compute binary confidences in the



depth image and let stereo refine the result in regions with low confidence. Nair
et al.[56] and Dal Mutto et al. [16] locally combine confidences from both stereo
and the depth image into the the stereo matching framework. Global methods
[20],[56],[88],[25] additionally apply spatial regularization techniques to propa-
gate more information to regions with low stereo or depth image confidence.
Inference of the global energy is then done using different optimization meth-
ods such as graph cuts[25], semi global optimization[20], MAP-MRF [88] or by
minimizing the total variation[56],[67].

7 Conclusion

This state of the art report has reviewed the Kinect as a consumer-grade motion
capturing toolkit and recognized its impact in the computer vision community.
The output of the Kinect, depth-, RGB- and IR-images at realtime framerate
enabled researchers to use the device in various scenarios. Simultaneous localiza-
tion and mapping (SLAM) in the context of robotics and object reconstruction
showed that the Kinect sensor fills a niche in that it can supply dense depth
maps in realtime. Out of its intended context the Kinect was employed to track
gestures and recognize faces. In small room environments it was shown that mul-
tiple Kinect sensors could capture motion without interfering destructively with
each other thus enabling the capturing of obstructed motions or the motions of
actors facing away from one camera. Recently, it was examined if non-opaque
objects can be reconstructed as well. By relying on silhouette edges present
in the depth images, e.g. around invalid depth pixel, the question could be an-
swered positively for glass objects and gas flows. We conclude that this capturing
has made an impact to the community that is unprecedented and sparked very
creative research ideas. Additionally many advancements in the field of sensor
fusion or depth map denoising e.g. from time-of-flight imaging can be applied to
the Kinect camera to improve its accuracy.

Although now, 3 years later, a new generation of consumer-grade motion
capturing devices is ready to be deployed and to challenge the position of the
Microsoft Kinect. We believe that the impact of the Kinect and similar devices
will continue to increase in the next years and that it will become the standard
prototyping-research tool on every desktop in the vision community.
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